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Abstract

Linear instrumental variable estimators, such as two-stage least squares (TSLS),
are commonly interpreted as estimating non-negatively weighted averages of causal ef-
fects, referred to as local average treatment effects (LATEs). We examine whether
the LATE interpretation actually applies to the types of TSLS specifications that are
used in practice. We show that if the specification includes covariates—which most
empirical work does—then the LATE interpretation does not apply in general. In-
stead, the TSLS estimator will, in general, reflect treatment effects for both compliers
and always/never-takers, and some treatment effects for the always/never-takers will
necessarily be negatively weighted. We show that the only specifications that have
a LATE interpretation are “saturated” specifications that control for covariates non-
parametrically, implying that such specifications are both sufficient and necessary for
TSLS to have a LATE interpretation, at least without additional parametric assump-
tions. This result is concerning because, as we document, empirical researchers almost
never control for covariates nonparametrically, and rarely discuss or justify parametric
specifications of covariates. We apply our results to thirteen empirical studies and find
strong evidence that the LATE interpretation of TSLS is far from accurate for the
types of specifications actually used in practice. We offer concrete recommendations
for practice motivated by our theoretical and empirical results.
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1 Introduction

Instrumental variable (IV) strategies are widely used for causal inference in economics,

political science, sociology, epidemiology, and other fields. Since the work of Imbens

and Angrist (1994), it has been increasingly common to interpret linear IV estimators

as estimating a local average treatment effect (LATE), or at least a non-negatively

weighted average of LATEs.

The LATE interpretation is most commonly derived for simplified IV specifications

that do not include covariates. We examine whether the LATE interpretation extends

to the types of linear IV specifications that are used in practice. We show that if the

IV specification includes covariates—which most empirical work does—then the LATE

interpretation does not apply in general. Instead, the linear IV estimand with covariates

is generally composed of treatment effects for both compliers and always-takers, and

some always-taker treatment effects are necessarily negatively weighted.

Our finding challenges the claim by Angrist and Pischke (2009, pg. 173) that

2SLS with covariates produces an average of covariate-specific LATEs. . .These

results provide a simple casual [typo in original] interpretation for 2SLS in

most empirically relevant settings.

The formal justification that Angrist and Pischke (2009) provide for this assertion is

based on a saturated two stage least squares (TSLS) specification that controls for

covariates nonparametrically, described by the authors as the “saturate and weight

approach” (Theorem 4.5.1; originally Theorem 3 in Angrist and Imbens, 1995). Drawing

on this justification, they continue on pg. 178 by suggesting

It seems reasonable to imagine that models with fewer parameters . . . nevertheless

approximate some kind of covariate-averaged LATE.

Our results show that this imagining is incorrect: saturated specifications are necessary

for TSLS with covariates to be interpretable as an average of covariate-specific LATEs,

at least without additional parametric assumptions.

Are saturated specifications “empirically relevant?” In Section 2, we report the

results of a survey on the specification of linear IV estimators in published empirical

papers in economics. Of the 99 papers in our survey that use a linear IV estimator with

covariates, we found only five papers that used a saturated specification at least once

and only a single paper that exclusively used saturated specifications. The implication

of our results for the 98 other papers is that they may not be estimating an average

of covariate-specific LATEs. In fact, they may be estimating a quantity that doesn’t

even satisfy the minimal requirement of being a non-negatively weighted average of

subgroup-specific treatment effects, a property we describe as weakly causal.
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Section 2 also contains an exposition of our main findings in the special case of

a binary treatment and binary instrument. This case exposes the central intuition:

if the covariates are not specified flexibly, then the TSLS estimand depends not only

on treatment effects, but also on potential outcome levels. We call this phenomenon

level dependence. Because the TSLS estimand is generally level dependent, it does not

necessarily have a unique decomposition into a weighted average of subgroup treatment

effects. Consequently, analyzing whether the TSLS estimand is weakly causal is more

complicated than simply checking for non-negative weights.1

In Section 3, we tackle this challenge by providing a conceptual definition of a

weakly causal estimand that is separated from the form that the estimand takes. We

then provide sufficient and necessary conditions for an estimand to be weakly causal.

The characterization has two components. First, a weakly causal estimand cannot be

level dependent. Second, a weakly causal estimand should not apply negative weight

to the treatment effects for any subgroup.

In Section 4, we specialize this definition to TSLS estimands. We show that a

necessary condition for the TSLS estimand to be weakly causal is that the TSLS spec-

ification has rich covariates, meaning that it exactly reproduces the conditional mean

of the instrument. Specifications that are saturated in covariates, such as the Angrist

and Pischke (2009) “saturate and weight” specification, will always have rich covari-

ates. But a non-saturated TSLS specification only has rich covariates if an implicit

parametric functional form assumption happens to be correct. Saturated specifications

can be extremely data hungry, which may explain why they were so seldom used in our

survey of empirical papers.

Kolesár (2013) provided the most general sufficient conditions for the TSLS es-

timand to be equal to a non-negatively weighted average of LATEs. His conditions

maintain rich covariates as an assumption. Our results show that rich covariates is also

necessary for the TSLS estimand to have even a weakly causal interpretation, let alone

an interpretation as a non-negatively weighted average of LATEs.

The implication of our results is that the Angrist and Pischke (2009) interpretation

of TSLS as a non-negatively weighted average of LATEs is fragile. In particular, it

depends on rich covariates, which is an implicit parametric functional form assump-

tion that appears to always be left unstated in empirical work. Although our survey

turned up only a single paper that used a TSLS specification guaranteed to satisfy rich

1In this sense our results and analysis are quite different from the recent literature on two-way fixed effects
models (e.g. Goodman-Bacon, 2021; Sun and Abraham, 2021), which point out interpretation problems that
arise in event studies if there are heterogeneous treatment effects due to observables (in particular, cohorts).
When analyzed without covariates, these estimands are not level dependent, but may have negative weights.
A consequence is that the problems we point to remain even with constant treatment effects (Section 4.5),
unlike in the two-way fixed effects literature.
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covariates, we found numerous papers that nevertheless invoked the widespread LATE

interpretation. Our results draw this interpretation into question.

In Section 5, we consider alternatives to TSLS. One alternative is to change the

TSLS specification to be saturated. However, as our empirical survey suggested, and as

our simulations confirm, this is often impractical due to the large number of regressors

produced by saturating. An alternative is to use double/debiased machine learning

(Chernozhukov et al., 2018, “DDML”) to estimate a partially linear IV (PLIV) mod-

ification of TSLS that controls for covariates in an additive but nonparametric way.

This frees the researcher of the need to choose a parameterization of the covariates, but

comes at a computational cost. It also estimates a quantity that, while weakly causal,

might still be hard to interpret.

When the instrument is binary, a related and potentially more attractive alternative

is to estimate an unconditional average causal response (ACR), which reduces to an

unconditional LATE when the treatment is also binary. This can be done either non-

parametrically with DDML or semi-parametrically using instrument propensity score

weighting (e.g. Tan, 2006; Uysal, 2011; S loczyński et al., 2024). A third potential alter-

native for the binary instrument, binary treatment case is Abadie’s (2003) κ-weighting

approach. The implementation of κ-weighting requires explicitly parameterizing the

conditional mean of the instrument given the covariates, the same object that we show

needs to be implicitly assumed to be correctly specified for TSLS to be weakly causal.

However, we show that κ-weighting too will only be weakly causal if rich covariates is

satisfied, the same necessary condition as for TSLS.

In Section 6, we compare the TSLS estimator with these alternatives in thirteen

empirical papers. We find strong evidence that rich covariates is often not satisfied in

practice. DDML PLIV estimates can be nearly as different from TSLS as TSLS is dif-

ferent from its comparable OLS estimate. The Ramsey (1969) RESET test tends to do

a good job detecting when failures of rich covariates lead to sizable differences between

TSLS and a DDML PLIV estimate. DDML PLIV estimates can still be dramatically

different from DDML or semi-parametric estimates of the unconditional ACR/LATE.

In Section 7, we provide some concluding remarks and recommendations for practice,

all of which can be implemented in Stata or R with mature software packages. These

recommendations show that it is still possible to estimate an unconditional ACR/LATE

or a statistically-weighted average of conditional LATEs in the presence of covariates.

But not with the types of TSLS specifications that are currently being used in practice.

S loczyński (2020, 2024) has recently made a different critique of the interpretation

of TSLS estimators. He maintains rich covariates as an assumption and shows that

the TSLS estimand can still fail to be weakly causal if the direction of monotonicity

varies with covariates but the TSLS specification does not include instrument-covariate
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interactions in the first stage. In contrast, our analysis focuses on the necessity of

the rich covariates condition under a stronger, unconditional monotonicity condition.

S loczyński (2024) also makes the important theoretical point that even when rich co-

variates is satisfied, the resulting linear IV estimand may be quite different from the

type of unconditional LATE that practitioners might expect. We do not discuss any

theory about this point, although we do illustrate it our empirical applications.

Rich covariates remains necessary under the weaker monotonicity condition con-

sidered by S loczyński (2020, 2024). Taken together, our paper and S loczyński (2024)

show that two conditions are necessary for the TSLS estimand to be interpretable as

a non-negatively weighted average of LATEs: (i) rich covariates, and (ii) a first stage

equation flexible enough to capture changes in the direction of monotonicity across

covariate values. The necessity of these conditions provides a definitive answer to the

question: “When is TSLS actually LATE?” That answer: probably not often.

2 Overview

In this section, we demonstrate our main results in the special case of a binary treatment

and a binary instrument.

2.1 Linear IV with covariates is not LATE

Let T ∈ {0, 1} be a binary treatment and Z ∈ {0, 1} be a binary instrument. The

outcome is Y with potential outcomes Y (0) and Y (1) related via Y = (1 − T )Y (0) +

TY (1). Potential treatment states are T (0) and T (1) with T = (1 − Z)T (0) + ZT (1).

The vector of covariates is X.

Assume that Z is conditionally exogenous in the sense of being independent of

(Y (0), Y (1), T (0), T (1)) conditional on X. Suppose that the Imbens and Angrist (1994)

monotonicity condition holds so that P[T (1) ≥ T (0)] = 1. The monotonicity condition

implies that the group variable G ≡ (T (0), T (1)) can take three values with non-zero

probability: G = (0, 0) ≡ nt are the never-takers, G = (0, 1) ≡ cp are the compliers,

and G = (1, 1) ≡ at are the always-takers.

Consider a linear IV regression with outcome variable Y , endogenous variable T ,

excluded instrument Z, and a vector of control variables X that includes a constant.

The Frisch-Waugh-Lovell Theorem can be used to show that the IV estimand (the

population coefficient on T ) is given by

βiv =
E[Y Z̃]

E[TZ̃]
, where Z̃ ≡ Z − L[Z|X] (1)
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are the residuals from a regression of Z on X, and

L[Z|X] ≡ X ′ E[XX ′]−1 E[XZ]

are the population fitted values from regressing (linearly projecting) Z onto X. The

IV estimand, βiv, is often interpreted as reflecting a non-negatively weighted average of

treatment effects for only the compliers. The following proposition shows that this is

not true in general.

Proposition 1. Suppose that E[Y (t)|X] = η′tX for some unknown parameters ηt,

t = 0, 1.2 Let ∆(cp, x) ≡ E[Y (1) − Y (0)|G = cp, X = x] and ∆(at, x) ≡ E[Y (1) −
Y (0)|G = at, X = x] denote the conditional average treatment effects for the compliers

and always-takers, respectively. Then

βiv = E[ω(cp, X)∆(cp, X)] + E[ω(at, X)∆(at, X)], (2)

where ω(cp, X) ≡ E[Z|X] (1 − L[Z|X]) P[G = cp|X] E[Z̃T ]−1

and ω(at, X) ≡ E[Z̃|X] P[G = at|X] E[Z̃T ]−1.

If E[Z̃T ] > 0, then the complier weights ω(cp, X) are negative if and only if L[Z|X] > 1.

The always-taker weights ω(at, X) are strictly negative with positive probability unless

E[Z̃|X] = 0 deterministically.

Proposition 1 shows that, in general, βiv reflects not only the compliers, but also

the always-takers. The monotonicity condition implies that the first stage coefficient is

positive, so E[Z̃T ] > 0. The weights on the always-takers therefore have the same sign

as the random variable E[Z̃|X] = E[Z|X] − L[Z|X]. Because X contains a constant,

E[Z̃] = E[E[Z̃|X]] = 0, implying that E[Z̃|X] is either always equal to zero, or else

it has positive probability of taking both positive and negative values. As a conse-

quence, whenever L[Z|X] ̸= E[Z|X], the IV estimand incorporates negatively weighted

treatment effects for some groups, which means that it fails to satisfy even a minimal

condition for “being causal.”

This reasoning shows that in order for the LATE interpretation to hold, it is nec-

essary that L[Z|X] = E[Z|X], a condition we call rich covariates. Specifications that

are saturated in covariates, such as “saturate and weight” (Angrist and Pischke, 2009),

have rich covariates. If Z and X are independent, as can be the case in some controlled

and natural experiments, then any specification with a constant will have rich covari-

2This additional linearity assumption is made in order to simplify the weights. Removing the assumption
only amplifies the negative interpretation issues exposed by Proposition 1. Our general results in Section 4
do not maintain this assumption.
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ates.3 Outside these two cases, having rich covariates is a parametric assumption. If it

fails, then the IV estimand βiv reflects not just compliers, but also negatively-weighted

always-takers.

There is no reason to expect, a priori, that the weights on the always-taker treatment

effects in (2) will be small in magnitude. In many applications, the proportion of

always-takers, P[G = at|X], is considerably larger than the proportion of compliers,

P[G = cp|X]. As a consequence, even negative values of E[Z̃|X] that are small in

magnitude can produce large negative weights on the always-taker treatment effects.

Decomposition (2) is not the only one possible. Instead of interpreting βiv as a

weighted average of compliers and always-takers, one can interpret it as a weighted

average of compliers and never-takers, or of all three groups, as shown in the next

proposition.

Proposition 2. Suppose that E[Y (t)|X] = η′tX for some (unknown) parameters ηt,

and both t = 0, 1. Let ∆(nt, x) ≡ E[Y (1)−Y (0)|G = nt, X = x] denote the conditional

average treatment effect for the never-takers. Then for any real number ϵ,

βiv = E[ωϵ(cp, X)∆(cp, X)] + E[ωϵ(at, X)∆(at, X)] + E[ωϵ(nt, X)∆(nt, X)],

where ωϵ(cp, X) ≡
(
ϵE[Z̃|X] + L[Z|X](1 − E[Z|X])

)
P[G = cp|X] E[Z̃T ]−1,

ωϵ(at, X) ≡ ϵE[Z̃|X] P[G = at|X] E[Z̃T ]−1,

and ωϵ(nt, X) ≡ (ϵ− 1) E[Z̃|X] P[G = nt|X] E[Z̃T ]−1.

Each choice of ϵ in Proposition 2 provides a different interpretation of βiv, with Proposi-

tion 1 corresponding to ϵ = 1. However, unless rich covariates holds, so that E[Z̃|X] =

E[Z|X]−L[Z|X] = 0, any choice of ϵ still leads to an interpretation that involves either

the always-takers or the never-takers, or both, with negative weights for some values

of X, as well as potentially negative weights for the compliers. Only in specifications

with rich covariates is βiv a non-negatively weighted average among compliers alone.

Proposition 2 shows that a causal interpretation can be partially salvaged if there

is one-sided non-compliance. For example, if there are no always-takers, so that

P[G = at|X] = 0, then one can take ϵ = 1, so that βiv is a weighted average among

compliers alone. The same is true if there are no never-takers by taking ϵ = 0. The

complier weights can still be negative in these cases if L[Z|X] does not lie in [0, 1], but

rich covariates is stronger than necessary to rule this out. However, these conclusions

about one-sided non-compliance depend on the simplifying linearity assumption that

E[Y (t)|X] = η′tX, which we do not maintain in our general results in Section 4.

3In Appendix SA.1, we discuss the case in which Z is randomly assigned conditional on a subset of X, as
might occur in a stratified experiment.
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2.2 Intuition

The intuition behind Propositions 1 and 2 can be seen by writing the numerator of βiv

as

E[Y Z̃] = E
[
E
[
Y Z̃|X

]]
= E

[only contains complier treatment effects︷ ︸︸ ︷
C[Y,Z|X]

]
+ E

[
E[Y |X]︸ ︷︷ ︸

contains all three groups

E[Z̃|X]
]
, (3)

where C denotes covariance. The first term in (3) is the average of the numerator of

a nonparametric IV specification that conditions on X. The argument in Imbens and

Angrist (1994) shows that this term is equal to an average of scaled LATEs, which only

reflects treatment effects for the compliers. It is the second term of (3) that causes

problems. This term reflects the difference between nonparametric conditioning and

linear projection.4

When covariates are not rich, so that E[Z̃|X] ̸= 0, the second term in (3) generally

depends on E[Y |X], a quantity which is determined not only by compliers, but also

by always-takers and never-takers. This creates level dependence in βiv because the

always-takers always have Y = Y (1) and the never-takers always have Y = Y (0):

βiv depends on the levels of the always-taker and never-taker potential outcomes. As

we show in Section 3, level dependent estimands do not have a causal interpretation

because the levels can lead βiv to have the “wrong sign.”

The expression in Proposition 1 arises from centering the term E[Y |X] in (3) around

E[Y (0)|X]. The simplifying linearity assumption implies that E[Y (0)|X] = η′0X is

uncorrelated with E[Z̃|X]. Since never-takers always have Y = Y (0), the centering

removes the average untreated outcome for the never-takers, leaving only a weighted

average of the complier and always-taker treatment effects. Alternatively, we can center

around E[Y (1)|X] = η′1X, which leaves a weighted average of the complier and never-

taker treatment effects. Both decompositions are equally valid ways to rewrite a single

number, βiv, as a weighted average of ∆(cp, X), ∆(at, X), and ∆(nt, X). Taking an

ϵ-weighted average of these two decompositions yields the expression in Proposition 2,

which creates a family of equally-valid decompositions.

The theory we develop in Section 3 is designed to handle this type of non-uniqueness

in decomposition and determine, in a general setting, necessary conditions for the ex-

istence of some “good” decomposition. For the simplified case considered here, with a

binary treatment, a binary instrument, and the linearity assumption E[Y (t)|X] = η′tX,

this type of analysis can be done directly, as in Proposition 2. Our analysis of more

general TSLS specifications in Section 4 shows that the necessity of rich covariates for

a causal interpretation is a conclusion that applies more broadly.

4Firpo et al. (2020) make a similar point in the context of balance tests for stratified experiments.
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Figure 1: IV with covariates is not LATE
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2.3 Numerical illustration

As a simple illustration of these results, suppose that X ∈ {(1,−1), (1, 0), (1, 1)} with

equal probability, where the first component corresponds to a constant. Then suppose

that

E[Z|X = x] = P[Z = 1|X = (1, x)] =

4/5 if x ∈ {−1, 1}

2/5 if x = 0
.

Regressing Z onto X yields the constant regression line:

L[Z|X] = X ′ E[XX ′]−1 E[XZ] = 2/3,

so that E[Z̃|X] = E[Z|X]−L[Z|X] ̸= 0 and is both positive and negative with non-zero

probability.

Suppose that the conditional group share probabilities are given by:

(never-takers) P[G = nt|X = (1, x)] = 1/3

(compliers) P[G = cp|X = (1, x)] = 1/6 + |x| /6

(always-takers) P[G = at|X = (1, x)] = 1/2 − |x| /6.
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Simplifying the algebra in Proposition 1 yields

ω(cp, (1, x)) =

12/7, if |x| = 1

3/7, if x = 0
and ω(at, (1, x)) =

6/7, if |x| = 1

−18/7, if x = 0
.

For simplicity, assume that Y (0) = 0, so that treatment effects are determined solely by

Y (1), and that E[Y (1)|G = cp, X = x] ≡ µ(cp) and E[Y (1)|G = at, X = x] = µ(at)

do not depend on x. Then Proposition 1 shows that

βiv =
9

7
µ(cp) − 2

7
µ(at).

Figure 1 shows the value of βiv as a function of µ(at), keeping µ(cp) = 1/3. If it

were true that LATE only reflects the compliers, then we would expect to see a flat line,

so that the IV estimand doesn’t depend on the treatment effect for the always-takers.

Not only is the line not flat, it slopes down. This means that the IV estimand can be

negative even when both the compliers and the always-takers have positive treatment

effects.

2.4 Survey on IV specifications used in empirical work

Propositions 1 and 2 show that using an IV specification that is saturated in covariates

is needed for the LATE interpretation asserted by Angrist and Pischke (2009). To get

a sense of how common it is to saturate in covariates, we surveyed the specifications

used in the empirical economics literature.

Our sample was constructed by searching the Web of Science Database for articles

published between January 2000 and October 2018 containing the words “instrument”

or “instrumental variable” in the abstract, title, or topic words. We restricted the search

to the following five journals: Journal of Political Economy, American Economic Re-

view, Quarterly Journal of Economics, Review of Economic Studies, and Econometrica.

In total, 266 articles matched our search criteria.

We restricted our attention to papers that use at least one IV specification in an

empirical application. This produced 122 papers; the other 144 papers not included

were either methodological papers without an empirical application, or were papers

that used the word “instrument” in a different context, such as to describe a policy or

financial instrument. Column (1) of Table 1 tabulates the papers used in our survey

by the journal in which they were published.

Column (2) shows that over 92% of the papers in our survey use TSLS (including

exactly identified linear IV) for at least some of their results. Column (3) counts the

subset of the papers in column (2) for which all TSLS specifications in the main body

of the paper include at least one covariate, or the authors explicitly state the exogeneity
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Table 1: IV papers by journal and type

(1) (2) (3) (4)

All papers Papers using Papers using Papers using
TSLS TSLS with covariates TSLS with covariates,

referring to LATE

American 100% 95% 82% 27%
Economic Review 44 42 36 12

Quarterly Journal 100% 93% 86% 14%
of Economics 28 26 24 4

Journal of Political 100% 91% 83% 30%
Economy 23 21 19 7

Econometrica 100% 73% 73% 27%
15 11 11 4

Review of 100% 100% 75% 25%
Economic Studies 12 12 9 3

All 100 % 92% 81% 25%
122 112 99 30

assumption for the instrument as conditional on covariates.5 Comparing columns (2)

and (3) shows that using covariates in TSLS is extremely common practice; only 13 out

of the 112 papers that use TSLS include any specifications without covariates. Column

(4) shows that almost a third of the papers that use TSLS with covariates also explicitly

use the phrases “compliers,” “local average treatment effect,” or “LATE” to describe

their results.

In Table 2, we categorize the papers in column (3) of Table 1 by the TSLS specifi-

cations they use. Column (2) shows that only 5% of these papers use any specification

that is saturated in covariates. These are typically preliminary specifications with only

a set of fixed effects. Column (3) shows that all of these papers use at least one specifi-

cation that is not saturated in covariates, with only one exception. The one exception

is Chamberlain and Imbens (2004). Column (4) shows that those authors also saturate

the first stage in both the covariates and the instruments, as prescribed by Angrist and

Pischke’s (2009) “saturate and weight approach.”

2.5 Implications for empirical practice

Avoiding the conclusion of Propositions 1 and 2 requires choosing a specification with

rich covariates, that is, one that ensures L[Z|X] = E[Z|X].

5Another possible justification for including covariates is to improve statistical precision. This motivation
was rarely stated explicitly in the papers in our survey. While it is difficult to infer researchers’ unstated
reasons for choosing particular specifications, it seems unlikely that they would only use specifications with
covariates if covariates were only being used to improve precision.
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Table 2: TSLS papers with covariates by journal and empirical specification

(1) (2) (3) (4)
At least one specification

Papers using TSLS Saturated Not saturated Saturated in instruments
with covariates in covariates in covariates and covariates

American 100% 0% 100% 0%
Economic Review 36 0 36 0

Quarterly Journal 100% 4% 100% 0%
of Economics 24 1 24 0

Journal of Political 100% 16% 100% 0%
Economy 19 3 19 0

Econometrica 100% 9% 91% 9%
11 1 10 1

Review of 100% 0% 100% 0%
Economic Studies 9 0 9 0

All 100 % 5% 99% 1%
99 5 98 1

Notes: This table classifies the papers from column (3) of Table 1 by TSLS specification.

The saturate and weight (SW) specification (Angrist and Pischke, 2009) is saturated

in covariates, so has rich covariates. However, it also uses a first stage that is fully

saturated in both the covariates and the instruments, meaning that the regressors are

indicators for all possible instrument-covariate combinations. This results in many

excluded variables and potential many instruments bias, which may explain why the

SW specification was used by only a single paper in the survey. In fact, that one paper

(Chamberlain and Imbens, 2004) is a methodological consideration of many instruments

bias.

However, the interactions between covariates and instruments used in the SW speci-

fication may not be necessary for the LATE interpretation. Excluded interactions were

not used in (1) and yet Propositions 1 and 2 show that if covariates are rich, then

βiv will be composed of only non-negatively weighted complier effects. The reason is

that we assumed that the Angrist and Imbens (1995) monotonicity condition operates

in the same direction for every covariate group. In contrast, the SW specification is

premised on a weaker version of the monotonicity assumption that allows the direction

of monotonicity to vary with covariates. S loczyński (2020, 2024) shows that including

the instrument-covariate interaction terms used in SW is necessary when considering

this weaker monotonicity condition.

Our results show that flexibly controlling for covariates is important for ensuring

that TSLS has a causal interpretation. If a flexible covariate specification cannot be

used, then another response is to test the null hypothesis that L[Z|X] = E[Z|X]. The
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most well-known test is Ramsey’s (1969) RESET test (e.g. Wooldridge, 2010, pp. 137–

138), which is straightforward to implement in either Stata or R. No papers in our

survey reported such a test. If Z is binary, then it is also sensible to check that the

fitted values L[Z|X] lie between 0 and 1, which is necessary for L[Z|X] = E[Z|X].

Alternatively, researchers can consider using an estimator other than TSLS. We discuss

alternative estimators in Section 5 and apply them in Section 6.

3 Definition and characterization of weakly causal estimands

In this section we define a weak property that an estimand should satisfy in order to

“be causal.” We do this because, as Proposition 2 showed, if rich covariates fails, then

the TSLS estimand might have multiple equally valid decompositions. Alternatively, if

the simplifying linearity assumption maintained in Proposition 2 is dropped, the TSLS

estimand might not have any decomposition in terms of only treatment effects. These

complications motivate a more abstract definition of a weakly causal estimand that is

separated from the functional form that the estimand takes. We develop the weakly

causal property in the context of a nonparametric IV model using potential outcomes

notation (e.g. Angrist et al., 1996) with an ordered treatment and a multivalued in-

strument. The results generalize the special case of a binary treatment and binary

instrument discussed in Section 2.

3.1 The nonparametric instrumental variables model

A discrete, ordered treatment variable T takes values in T ≡ {t0, t1, . . . , tJ}, listed in

increasing order. We are interested in the causal effects that T has on an outcome

variable, Y . We observe a scalar- or vector-valued instrumental variable (IV) Z that

takes values in a set Z ≡ {z0, z1, . . . , zK}. The case in Section 2 corresponds to T =

{0, 1} and Z = {0, 1}. There is a vector of covariates X with support X .

Associated with each level of the IV is a potential treatment choice, T (z). Associated

with each level of the treatment is a potential outcome, Y (t), which does not directly

depend on the instrument due to the usual exclusion restriction. The potential and

actual treatments and outcomes are related through

T =
∑
z∈Z

1[Z = z]T (z) and Y =
∑
t∈T

1[T = t]Y (t).

We maintain the following standard nonparametric exogeneity condition throughout

our analysis.

Assumption EXO. (Exogeneity) ({T (z)}z∈Z , {Y (t)}t∈T )⊥⊥Z|X.
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We assume that each of T,Z, and X are discretely distributed with finite support.

This is just for mathematical simplicity. Our theoretical results can be extended to

allow for T to be a continuous scalar, and both X and Z to be vectors with continuous

components. The changes required essentially involve replacing sums with integrals and

finite indices with function arguments. We also assume throughout that the expectation

of Y exists.

Our analysis uses a partition of individuals into mutually exclusive and exhaustive

groups based on their potential treatment choices. Let G ≡ (T (z0), T (z1), . . . , T (zK))

denote an individual’s choice group, that is, their configuration of potential treat-

ment choices under each of the instrument values. Let G denote the values that

G can take. In the binary treatment, binary instrument case, G takes values in

G = {(0, 0), (1, 1), (0, 1), (1, 0)}, corresponding to the groups Angrist et al. (1996, Table

1) called the never-takers, always-takers, compliers, and defiers, respectively. Using the

group notation, Assumption EXO can be equivalently written as follows.

Assumption EXO. (Exogeneity, group form) (G, {Y (t)}t∈T )⊥⊥Z|X.

3.2 Definition of a weakly causal estimand

Consider the group treatment responses (GTRs)

µj(g, x) ≡ E[Y (tj)|G = g,X = x],

which are the expected potential outcomes across choice and covariate groups.6 We

collect the GTRs as µ ≡ {µj(g, x) : j = 0, 1, . . . , J, g ∈ G, x ∈ X}, which takes values in

Rdµ . Let β be a quantity whose value depends on µ. We use the following definition

as a minimal requirement for β to be interpreted as “causal.”

Definition WC. β is weakly causal if both of the following statements are true for

any µ:

If µj(g, x) − µj−1(g, x) ≥ 0 for all j ≥ 1, all g ∈ G, and every x ∈ X , then β ≥ 0.

If µj(g, x) − µj−1(g, x) ≤ 0 for all j ≥ 1, all g ∈ G, and every x ∈ X , then β ≤ 0. (4)

Definition WC is a natural requirement to place on an estimand. The requirement is

merely that if the causal effect of the treatment has the same sign for every treatment

contrast, and every choice and covariate subgroup, then the summary estimand β also

has that sign. That is, β is weakly causal if it is not a systematically misleading measure

of the sign of the underlying group- and covariate-specific treatment effects.

6As a minor abuse of notation, we assume that µj(g, x) is well-defined for all (g, x), even if g is not in the
support of G given X, so that P[G = g,X = x] = 0. This convention has no impact on our results.
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Definition WC is intended to be an extremely weak criterion. An estimand can be

weakly causal and still be completely uninteresting. For example, the trivial estimand

β = 0 is weakly causal. However, it seems unlikely that an estimand that fails to be

weakly causal could still reasonably be described as reflecting the causal effect of T on

Y , since it may not even have the right sign. As minimal as Definition WC is, we have

already seen in Figure 1 that a linear IV estimand can fail to satisfy it, even if the

instrument satisfies exclusion and exogeneity (Assumption EXO).

3.3 Weak causality and non-negatively weighted averages

We consider estimands that can be written as

β = E[b(T,X,Z)Y ] (5)

for some function b. For example, βiv in Section 2 satisfies (5) with b(T,X,Z) =

Z̃/E[TZ̃] = (Z − L[Z|X])/E[T (Z − L[Z|X])]. The following proposition decomposes

these estimands into GTRs.

Proposition 3. Suppose that β has form (5), and that Assumption EXO holds. Then

β =
∑
g,x

ω0(g, x)µ0(g, x) +
∑
g,x

J∑
j=1

ωj(g, x) (µj(g, x) − µj−1(g, x)) , (6)

where ωj(g, x) ≡ E [1[T ≥ tj ]b(tj , x, Z)|G = g,X = x] P[G = g,X = x] for all j ≥ 0.

The next proposition shows that an estimand that is weakly causal can be written

as a non-negatively weighted average of subgroup-specific treatment effects. This cri-

terion is widely-used (e.g. Angrist, 1998; Lee, 2008; Angrist and Pischke, 2009; Card

et al., 2015; Goodman-Bacon, 2021; Sun and Abraham, 2021; Goldsmith-Pinkham et al.,

2024). The proposition also shows that there are two reasons that an estimand can fail

to be weakly causal: either it places negative weights on treatment effects or it depends

on the levels of the potential outcomes (or both).

Proposition 4. Suppose that β has the form (5) and that Assumption EXO holds.

Then β is weakly causal if and only if:

• (Non-negative weights) ωj(g, x) ≥ 0 for all j ≥ 1, and all g and x.

• (Level independence) ω0(g, x) = 0 for all g and x.

If these conditions are satisfied, then

β =
∑
g,x

J∑
j=1

ωj(g, x) (µj(g, x) − µj−1(g, x)) (7)
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for non-negative weights ωj(g, x) ≥ 0.

Proposition 3 shows that if β has form (5), then β can always be written as (6).

Proposition 4 uses that representation to show that if β cannot also be written like (7)

with weights that are non-negative, then one of two things must be true: either β only

reflects treatment effects, but some of these effects are negatively weighted, or else β

reflects not just treatment effects but also the levels of potential outcomes. The first

situation violates the non-negative weights requirement, which is naturally necessary

for β to be weakly causal (recall Figure 1). The second situation violates the level

independence requirement. Level independence is necessary for β to be weakly causal

because it prevents the possibility that all treatment effects are positive, even while the

levels of the GTRs are such that β < 0.

4 When is TSLS weakly causal?

In this section we specialize the general results of the previous section to a class of

TSLS estimands.

4.1 TSLS specifications and estimands

A TSLS specification is characterized by four components: (i) the outcome variable;

(ii) the endogenous variables that are included in the second stage and are regressands

in the first stage; (iii) the excluded variables that are excluded from the second stage

but are regressors in the first stage; and (iv) the included variables that are regressors

in both stages. The nonparametric IV model specifies the outcome variable, Y , but

not which combinations of T , Z, and X go in the first and second stages. A TSLS

specification produces a TSLS estimator, the probability limit of which is called the

TSLS estimand.

We consider TSLS specifications where there is a single endogenous variable, T , a

single scalar excluded variable, Z, and a vector of included variables, X. For this case,

the TSLS estimand is the same as the linear IV estimand because Z and T have the

same dimension. We consider more general TSLS specifications in Appendix SA.2. In

what follows, we reserve the phrase TSLS for specifications with strictly more excluded

variables than endogenous variables.

The coefficient on T for the linear IV (née TSLS) estimand with a single endogenous

variable and a single excluded variable is given by

βiv =
E[Z̃Y ]

E[Z̃T ]
= E

[(
Z̃

E[Z̃T ]

)
Y

]
. (8)
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Proposition 3 shows that βiv can be written as (6) with

ωj(g, x) = E[Z̃T ]−1 E
[
1[T ≥ tj ]Z̃|G = g,X = x

]
P[G = g,X = x]. (9)

Proposition 4 shows that whether βiv is weakly causal is determined by ωj(g, x).

4.2 Main result

Monotonicity conditions are essential for TSLS estimands to have weakly causal inter-

pretations. We maintain the following monotonicity condition in the main text.

Assumption MON. (Monotonicity) Label the values of Z in increasing order as

z0 ≤ z1 ≤ · · · ≤ zK . Then

P[T (z0) ≤ T (z1) ≤ · · · ≤ T (zK)|X = x] = 1 for all x.

Assumption MON means that increasing the instrument weakly increases treatment

for all individuals. This is a strong form of monotonicity because it operates in the

same direction conditional on X = x for all values of x. Results under weaker forms of

monotonicity can be found in Appendix SA.2.

Our main result is Theorem 1, which uses the following definition.

Definition RC. Let L[Z|X = x] ≡ E[ZX ′] E[XX ′]−1x be the population fitted value

at X = x from regressing Z onto X. An IV specification has rich covariates if

E[Z|X = x] = L[Z|X = x] for every x ∈ X .

Theorem 1. Suppose that Assumptions EXO and MON are satisfied. Then βiv is

weakly causal if and only if the IV specification has rich covariates.

Theorem 1 shows that rich covariates is both sufficient and necessary for the linear

IV estimand to have a weakly causal interpretation. The sufficient direction is a special

case of Kolesár (2013, Theorem 1), who explicitly maintained rich covariates as an

assumption (Kolesár, 2013, Assumption L). The necessary direction shown here is novel.

It shows that rich covariates is an essential assumption.

As Kolesár (2013, pp. 10–11) notes, there are two important special cases in which

an IV specification will have rich covariates. One is when X represents a saturated

specification consisting of a vector of indicators for a set of exclusive and mutually

exhaustive events. The other is when Z is mean independent of X so that E[Z|X =

x] = E[Z] is constant in x, which implies that

L[Z|X = x] ≡ E[ZX ′] E[XX ′]−1x = E[Z] E[1X ′] E[XX ′]−1x = E[Z],
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because X contains a constant. Outside these two special cases, the claim that an

IV specification has rich covariates is an implicit parametric assumption. Theorem 1

shows that this parametric assumption must be defended in order to argue that βiv has

a causal interpretation.

4.3 Implications for OLS under selection on observables

Theorem 1 also applies to selection on observables by taking Z = T , under which

Assumption MON is immediately satisfied.

Corollary 1. Suppose that Z = T and that Assumption EXO is satisfied. Let βols

denote the coefficient on T for the OLS estimand generated by the ordinary least squares

regression of Y on T and X. Then βols is weakly causal if and only if L[T |X] = E[T |X].

Angrist (1998) proposed implementing a selection on observables strategy using the

OLS estimator described in Corollary 1 with a saturated specification of covariates. He

described the difference between this regression coefficient and nonparametric matching

as “partly cosmetic” (Angrist, 1998, pg. 255). Based on these results, Angrist and Pis-

chke (2009, Section 3.3.1) argue that “the differences between regression and matching

are unlikely to be of major empirical importance.”

However, Corollary 1 shows that Angrist’s (1998) argument cannot be extrapolated

beyond the saturated case that he considered. The result implies that any deviation

from full saturation will mean that the OLS estimand fails to be weakly causal unless

one assumes that the propensity score P[T = 1|X = x] = E[T |X] = L[T |X] is actually

linear in X. Moreover, whenever Angrist’s (1998) saturated specification can actually

be implemented, the overlap condition P[T = 1|X = x] ∈ (0, 1) must hold for every x,

or else there would be perfect collinearity.

The implication of Corollary 1 then is that there are only two situations in which An-

grist’s (1998) linear regression implementation of selection on observables will be weakly

causal. First, when the propensity score is implicitly assumed to be linear. Second,

when it is also possible to nonparametrically estimate conditional average treatment

effects x-by-x. The first case involves a parametric assumption, while in the second

case one could just as well weight the x-by-x treatment effects into a parameter such

as the average treatment effect that is not only weakly causal but also has a clear

counterfactual interpretation. Outside these two cases, βols is not weakly causal.

4.4 Specifications with more general excluded variables

S loczyński (2020, 2024) considers the interpretation of TSLS estimands with a binary

treatment and a binary instrument under the assumption that the specification has rich

covariates. He considers both Assumption MON, which he calls “strong” monotonicity,
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and a “weak monotonicity” counterpart in which the direction of monotonicity can

vary with x. S loczyński (2020, 2024) shows that if Assumption MON fails, but weak

monotonicity is satisfied, then βiv will not be weakly causal even if the specification has

rich covariates. The problem is that the IV specification includes only a single excluded

variable, Z, so is not flexible enough to pick up changes in monotonicity in the first

stage. S loczyński (2020, 2024) shows that this problem can be resolved by using the

“saturate and weight” TSLS specification in Angrist and Pischke (2009), which includes

interactions between X and Z as excluded variables.

Kolesár (2013) provided general sufficient conditions for the TSLS estimand to be

interpreted as a non-negatively weighted average of treatment effects under weak mono-

tonicity. As noted above, Kolesár (2013) maintained rich covariates as an assumption,

whereas we show that rich covariates is a necessary condition. Kolesár (2013) showed

that given rich covariates, the TSLS estimand can be written as a weighted average of

treatment effects. Whether the weights are non-negative depends on whether the first

stage equation is able to sufficiently well approximate the nonparametric propensity

score. In Appendix SA.2, we provide a lower-level sufficient-and-necessary charac-

terization of when the weights are non-negative in terms of the first stage specifica-

tion being “monotonicity-correct.” The takeaway from that characterization reinforces

S loczyński’s findings that even when rich covariates is satisfied, an additional necessary

condition for TSLS to be weakly causal is that the first stage is sufficiently flexible to

reproduce the direction of monotonicity across covariate groups.

The rich covariates condition extends readily to more general types of excluded

variables. Suppose that the excluded variables are a vector i(Z,X) with population

first stage coefficient vector γ. Let Ż ≡ γ′i(Z,X). In Appendix SA.2 we show that

a necessary condition for the resulting TSLS estimand to be weakly causal is that

E[Ż|X = x] = L[Ż|X = x] for all x, a condition that naturally generalizes the case

considered here with i(Z,X) = Z scalar. This condition has basically the same content

as Definition RC, but involves the aggregate Ż instead of just Z itself.

4.5 Constant, linear treatment effects

Suppose we assume that treatment effects are constant and linear.

Assumption CLE. (Constant, linear effects) There exists a constant ∆ such that

µj(g, x) − µj−1(g, x) = ∆(tj − tj−1) for every j ≥ 1, g ∈ G and x ∈ X .

Theorem 1 continues to hold under Assumption CLE, except Assumption MON no

longer needs to be maintained.

Proposition 5. Suppose that Assumptions EXO and CLE are satisfied. Then βiv is

weakly causal if and only if the IV specification has rich covariates.
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The assumptions of Proposition 5 allow for a simple illustration of the level depen-

dence phenomenon. Assumption CLE implies that Y = Y (t0) + ∆T , so

βiv = E[Z̃T ]−1 E[Z̃(Y (t0) + ∆T )] = ∆ + E[Z̃T ]−1

depends on Y (t0)︷ ︸︸ ︷
E[Z̃Y (t0)] . (10)

Using Assumption EXO, the potentially level dependent term can be written as

E[Z̃Y (t0)] = E
[
E[Z̃|X] E[Y (t0)|X]

]
. (11)

The nonparametric IV model does not restrict E[Y (t0)|X] at all. Level dependence

will therefore happen whenever E[Z̃|X] ̸= 0 with positive probability, which in turn

happens whenever the IV specification does not have rich covariates.

Proposition 5 shows that the necessity of rich covariates does not have to do with

heterogeneous or nonlinear treatment effects per se. Rather, it is a fundamental conse-

quence of the exercise started by Imbens and Angrist (1994) of interpreting a linear IV

estimand through a nonparametric IV model. The linear IV estimator was designed for

the linear IV model; giving it a causal interpretation within a nonparametric IV model

requires additional parametric assumptions.

Instead of that additional parametric assumption being rich covariates, one can

maintain a parametric assumption on a conditional mean of the potential outcomes.

Assumption LIN. (Linear potential outcome mean) E[Y (tj)|X = x] = η′x for

some η and some j.

Proposition 6. Suppose that Assumptions EXO, CLE, and LIN are satisfied. Then

βiv = ∆, so βiv is weakly causal.

Assumption LIN—or something similar—is explicitly stated in classical and text-

book treatments of IV models, e.g. Heckman and Robb (1985, pp. 184–186) or

Wooldridge (2010, pg. 939). But it is not part of the nonparametric IV model that

is used to justify the widely-invoked “LATE interpretation” of the linear IV estimator

(Angrist and Imbens, 1995). As Abadie (2003, pg. 247) points out, an undesirable

implication of Assumption LIN is that one can have βiv = ∆ even if the excluded

“instrument” Z is actually some nonlinear function of X alone, an example of what

Angrist and Pischke (2009, pg. 191) describe as “back-door identification.”

A higher-level alternative to having rich covariates or imposing Assumption LIN is

to directly assume that the left-hand side of (11) is zero. This assumption appears in

Wooldridge’s (2010, pg. 937) discussion of the binary treatment case as the assump-

tion that L[Y (t0)|X,Z] does not depend on Z. If we put aside knife-edge balancing

cases, (11) shows that this assumption either requires rich covariates or Assumption
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LIN. However, considering the high-level assumption usefully exposes the fundamental

problem with using the nonparametric IV model to justify linear IV: Assumption EXO

by itself does not imply that a hypothetical linear regression of Y (t0) onto X and Z

would yield a zero coefficient on Z, even though this condition is essential for giving

the linear IV estimand a causal interpretation.

Assumption LIN was also maintained in Propositions 1 and 2, which showed that

βiv is not weakly causal without rich covariates. This does not contradict Proposition 6

because of the addition of constant, linear treatment effects (Assumption CLE). When

Assumption CLE is removed to allow for heterogeneous treatment effects, Assumption

LIN no longer suffices as a substitute for rich covariates.

5 Alternatives to linear IV

5.1 Partially linear IV

Theorem 1 shows that βiv is weakly causal if and only if the IV specification has rich

covariates. If rich covariates is satisfied, it follows from (8) that βiv = βrich, where

βrich ≡ E [Y (Z − E[Z|X])]

E [T (Z − E[Z|X])]
=

E [C[Y,Z|X]]

E [C[T,Z|X]]
. (12)

If rich covariates is not satisfied, then it may be that βiv ̸= βrich, however we can still

consider βrich as what the IV estimand would have been had rich covariates actually

been satisfied. Given Assumptions EXO and MON, βrich always satisfies the minimal

requirement of being weakly causal.

One way to estimate βrich is to use a richer linear IV specification that controls for

covariates so flexibly that rich covariates must be satisfied. If X is discrete, then this is

the same as using a saturated specification with one dummy variable for each discrete

value of X. These types of specifications are discussed in Angrist (1998) and Angrist

and Pischke (2009), but were rarely used in the IV papers in our survey (Table 2).

They take an extreme position on the bias-variance trade-off that is difficult to defend

for settings in which X takes many values.

Chernozhukov et al. (2018) show how machine learning (ML) methods can be used

to estimate a modification of the classical linear IV model where the linear function

of covariates has been replaced by an unknown function. They describe the model

as partially linear IV (PLIV). It is straightforward to show that the coefficient on

treatment in their model is equal to βrich. Chernozhukov et al. (2018) show how to

construct the Neyman orthogonal score for the PLIV model, which depends on the
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treatment coefficient as well as the functions

ν(x) ≡ (E[Y |X = x],E[T |X = x],E[Z|X = x]). (13)

They then show how to use the orthogonality of the score in conjunction with cross-

fitting to construct consistent and asymptotically normal estimators of the treatment

coefficient under nonparametric assumptions about the unknown functions that com-

prise ν. They suggest estimating ν using supervised ML algorithms such as random

forests, gradient boosted trees, and neural networks.

5.2 Unconditional average causal response

Proposition 4 showed that any weakly causal estimand, such as βrich, can be written as

a non-negatively weighted average of subgroup treatment effects. Given rich covariates,

the general form of the weights in (37) becomes

ωj(g, x) = E[Z̃T ]−1 C [1[T ≥ tj ], Z|G = g,X = x] P[G = g,X = x]. (14)

While (14) has a reasonable statistical interpretation—larger groups and contrasts that

covary more with the instrument get more weight—it does not appear to have a more

concrete counterfactual interpretation. One obstacle is that the instrument can be mul-

tivalued, which even without covariates turns the linear IV estimand into a statistically-

weighted average of treatment effects across different complier groups (Imbens and An-

grist, 1994). If the instrument Z ∈ {0, 1} is binary, then a parameter that does have

a concrete counterfactual interpretation is the unconditional average causal response

(ACR) (Angrist and Imbens, 1995):

βacr ≡ E [Y (T (1)) − Y (T (0))|T (1) > T (0)] . (15)

Note that βacr is the LATE when T ∈ {0, 1} is binary, so that T (1) = 1 and T (0) = 0.

As S loczyński (2020, 2024) points out, the difference between βrich and βacr can be

large. To see why, let βacr(x) ≡ E[Y (T (1))−Y (T (0))|T (1) > T (0), X = x] be the ACR

conditional on X = x. Then iterating expectations shows that

βacr = E

[
βacr(X)

P[T (1) > T (0)|X]

P[T (1) > T (0)]

]
, (16)

whereas, with a bit of algebra, it can also be shown that

βrich = E

[
βacr(X)

P[T (1) > T (0)|X] V[Z|X]

E[P[T (1) > T (0)|X] V[Z|X]]

]
. (17)
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The difference between βacr and βrich arises because the latter puts extra weight on

values of X with more variation in Z. S loczyński (2020, 2024) argues that βacr is likely

what empirical researchers have in mind, and he shows that the difference in weights

can make βrich misleading. So, even if rich covariates holds, βtsls may not be what an

empirical researcher expects. In Section 6, we find empirical evidence that βrich and

βacr can be quite different.

We produce this evidence by directly estimating βacr using two different approaches.

Both approaches are based on a finding due to Tan (2006) and Frölich (2007) that

βacr =
E[E[Y |Z = 1, X] − E[Y |Z = 0, X]]

E[E[T |Z = 1, X] − E[T |Z = 0, X]]
. (18)

The first approach comes from Chernozhukov et al. (2018), who show how to estimate

βacr using DDML. The orthogonal score that they derive involves the five functions

ν(x) ≡
(

E[Y |Z = 0, X = x],E[Y |Z = 1, X = x],E[T |Z = 0, X = x],

E[T |Z = 1, X = x],E[Z|X = x]
)
,

all of which can be estimated nonparametrically using ML algorithms. The second

approach comes from Uysal (2011), Heiler (2022), and S loczyński et al. (2024), who

exploit the connection that (18) has with propensity score weighting: the numerator

looks like the average treatment effect of Z on Y and the denominator like the average

treatment effect of Z on T . They propose a weight-normalized inverse propensity score

estimator and derive its asymptotic properties. Implementing the estimator requires

parameterizing the instrument propensity score, E[Z|X].7

5.3 Abadie’s (2003) κ

Abadie (2003, Section 4.2.1) and Angrist and Pischke (2009, pp. 179–180) suggest using

a weighted regression to control for covariates when both T ∈ {0, 1} and Z ∈ {0, 1} are

binary. As Abadie (2003) showed, a weighted linear regression of Y on T and X with

weights given by

κ ≡ 1 − T (1 − Z)

1 − E[Z|X]
− (1 − T )Z

E[Z|X]
(19)

is, in the population, the same as an unweighted linear regression of Y on T and X

among the subpopulation of compliers. Abadie (2003) showed that if rich covariates

hold, then the κ-weighted estimate of the coefficient on T is numerically equivalent to

7See also MaCurdy et al. (2011), Donald et al. (2014), Ogburn et al. (2015), Sun and Tan (2022), and
Singh and Sun (2024) for related estimators.
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the linear IV estimate, so estimates a weakly causal estimand.

The next proposition shows that rich covariates turns out to also be necessary for

the κ-weighted estimand to be weakly causal.

Proposition 7. Suppose that Assumptions EXO and MON are satisfied and that

both T and Z are binary. Let βabadie be the population estimand for a weighted linear

regression of Y on T and X with weights given by κ. Then βabadie is weakly causal if

and only if the linear IV specification has rich covariates, so that E[Z|X] = L[Z|X].

When this is true, βabadie = βiv = βrich.

Proposition 7 shows that when rich covariates holds, the κ-weighting estimand is equal

to the linear IV estimand, so there is no reason to prefer it, as the linear IV estimand

is simpler.8 When rich covariates does not hold, both the linear IV and κ-weighting

estimands are not weakly causal.

Angrist and Pischke (2009, pp. 180–181) use Angrist’s (2001) reanalysis of Angrist

and Evans (1998) as an example to dismiss the relevance of Abadie’s (2003) approach.

Yet Angrist (2001, pg. 12) also reports that “the covariates are not highly correlated

with the twins instruments. . . ” Our findings show why it is misleading to extrapolate

the Angrist and Pischke (2009) argument to other empirical settings: the case when Z

is mean independent of X is one where any covariate specification is rich. If Z and X

are dependent—as is often the case when covariates are used in an IV analysis—then

the linear IV estimand will not have a complier interpretation unless E[Z|X = x] is

modeled correctly. At the same time, Proposition 7 also implies that the implementation

of Abadie’s κ proposed by Angrist and Pischke (2009, pp. 180–181) only has a causal

interpretation when the IV specification has rich covariates.

5.4 Monte Carlo simulation

In this section, we report the results of a Monte Carlo simulation based on a data

generating process (DGP) calibrated to Card’s (1995) data on the returns to schooling,

which we reanalyze in the next section. We use covariates X ≡ (X1, X2), where X1

takes a number of values that we vary across simulations, while X2 always takes nine

values. We generate the binary instrument Z—presence of a nearby college in Card’s

application—by specifying E[Z|X = x] to be an interacted cubic polynomial fit to

the Card data with X1 as experience and X2 as region indicators (Figure SA.1). We

generate the binary treatment T (college attendance) so that P[T = 1|Z = z] matches

its estimated counterpart in Card’s data. Then, we generate the outcome Y (log wages)

using an optimization procedure that matches several estimates in Card’s data while

8These considerations are about the estimand; they do not take into account differences in the statistical
properties of the linear IV and κ-weighting estimators.
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Figure 2: Weights for βiv in the simulation DGP
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Notes: The figure shows the weights in Proposition 1 for the linear IV estimand when X1 takes 24 values. The
weights vary by both choice group and X = (X1, X2). The weights for the compliers are always non-negative,
but the weights for the always-takers are often negative, as shown in shaded red. The decomposition under-
lying the figure is not unique (Proposition 2). Figure SA.2 shows the analogous figure for a decomposition
involving only compliers and never-takers.

also ensuring that Assumption LIN is satisfied, as in the simplified case discussed in

Section 2. See Appendix SA.3 for more details.

We use this DGP to compare the performance of five estimators.

The first is a linear IV estimator that controls for X1 linearly while including a full

set of indicators for X2, but omits any nonlinear or interaction terms. This specification

does not satisfy rich covariates, so is not weakly causal. Figure 2 illustrates the weights

for the estimand βiv of this estimator using the Proposition 1 decomposition into com-

pliers and always-takers, for the case when X1 takes 24 values. All complier groups are

positively-weighted. However, always-takers receive considerable weight, both positive

and negative. The overall value of βiv is .660, which reflects the sum of .391 from

positively-weighted compliers, .614 from positively-weighted always-takers, and −.345
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from negatively-weighted always-takers. Figure SA.2 shows that writing βiv in terms

of complier and never-takers instead of always-takers also leads to negative weights,

as shown in Proposition 2. The second estimator is Abadie’s κ-weighting estimator

using the same covariate specification, which Proposition 7 showed is also not weakly

causal. The estimand for the κ-weighting estimator, βabadie, is very similar to that for

βiv regardless of how many values X1 takes (Figure SA.3).

The third estimator is a linear IV estimator that includes nonlinear and interaction

terms, so that rich covariates is satisfied. We call this estimator “correctly specified,” as

it assumes that X has been chosen so that L[Z|X] = E[Z|X]. The fourth estimator is a

linear IV estimator that is saturated in X. This estimator also satisfies rich covariates,

but the number of regressors it uses increases with the support of X1, which we will

vary in the simulation. The fifth estimator is a DDML estimator for the PLIV model

using an ensemble of a random forest with 1000 trees and three variables at each split,

gradient boosted trees with 1000 stages, and a neural network with two neurons.9 Each

of these three estimators can be viewed as estimating βrich = .430, which is a weakly

causal estimand comprised of only non-negatively weighted complier effects.

The top row of Figure 3 compares the means of the five estimators, with some more

detailed results reported in Table SA.1. The facet columns of Figure 3 vary the sample

size while the x-axis varies the size of the support of X1. The linear IV estimator

converges to the negatively-weighted estimand βiv, so it exhibits a bias for βrich that

does not decrease with the sample size. The correctly specified and saturated estimators

both converge to βrich, however when the sample size is small relative to the number

of covariate values, the saturated estimator exhibits substantial bias. The bias of the

DDML-PLIV estimator for βrich is larger than the correctly specified estimator, but

decreases as the sample size increases. Table SA.2 shows that using more expressive

algorithms by themselves (without an ensemble) can eliminate the bias, but this comes

with the risk of using a very poor-performing algorithm, especially with smaller sample

sizes.

The bottom row of Figure 3 compares the standard deviations of the five estimators.

The comparison is taken relative to the correctly-specified estimator to keep the magni-

tude comparable across sample sizes. The linear, κ-weighting, correctly specified, and

DDML-PLIV estimators all exhibit broadly similar standard deviations across sample

9 The ensemble is formed by short-stacking with convex weights chosen through non-negative least squares,
as advocated by Ahrens et al. (2023, 2024b). The DDML estimates are random due to the sample splits
used in cross-fitting. We repeat each estimate across five sample splits and report the resulting median, as
recommended by Chernozhukov et al. (2018). We implemented our simulations in R using the ddml package
(Ahrens et al., 2024a). We used the following packages on the back-end of ddml to implement machine
learning algorithms: gbm for gradient-boosting (Ridgeway, 2007), nnet for neural networks (Ripley and
Venables, 2016), and ranger for random forests (Wright and Ziegler, 2017). In Table SA.2, we also report
some results using lasso as implemented by the glmnet package (Friedman et al., 2008).
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Figure 3: Simulation results: bias and standard deviation
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draws so are excluded.

sizes and number of covariate values. The flexibility of these estimators does not de-

pend on the number of values that the covariates take, so increasing the support of X1

does not have a large impact on their standard deviations. In contrast, the standard

deviation of the saturated linear IV estimator explodes as the number of covariates

increases.

Figure 4 summarizes these findings by reporting the root mean-squared error (RMSE)

of the five estimators. The saturated specification performs well when the number of

covariate values is small relative to the sample size, but poorly when the number of

covariate values is moderate or large. This is likely the reason that saturated specifi-

cations are used so infrequently in the literature (Section 2.4), as even a small number

of distinct discrete covariates leads to a saturated specification with a large number

of covariate values due to the curse of dimensionality. The ideal, but infeasible, solu-

tion would be to use a linear IV estimator in which E[Z|X] is known to be correctly

specified, so that rich covariates is satisfied. Without such knowledge, this solution en-
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Figure 4: Simulation results: root mean-squared error
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Notes: See notes for Figure 3. The bias component of the root mean-squared error (RMSE) is calculated
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tails an assumption that the specification is in fact correct. If assuming rich covariates

is unattractive, then the DDML-PLIV estimator provides a feasible alternative that

can viewed as nonparametrically estimating the weakly causal quantity βrich. Figure

4 shows that in our simulation the DDML-PLIV estimator is comparable in terms of

RMSE to the (infeasible) correctly specified linear IV estimator.

6 Applications

In this section, we use our findings to reanalyze several empirical studies. We begin with

Card’s (1995) estimates of the returns to education as a classic and familiar example.

Next, we turn to the papers by Nunn and Wantchekon (2011) and Dube and Harish

(2020) as more modern examples of how linear IV is applied and interpreted in practice.

Finally, we reanalyze the main estimates for ten studies from our survey in Section 2.4.

For all studies, we reproduce the original linear IV estimates alongside their compa-

rable OLS estimates. We conduct a Ramsey (1969) RESET test of the null hypothesis

that E[Z|X] is linear in X, that is, of rich covariates.10 We then estimate βrich with

DDML using the same ensemble as in Section 5.4. Standard errors for all estimators

are heteroskedasticity and/or cluster-robust depending on the original application.11

10We implement the RESET test using the second and third orders of the fitted values.
11For the DDML estimates, we still report the median estimate, but we use 100 random sample splits

instead of five as in the simulations. The DDML standard errors include an adjustment for uncertainty over
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6.1 Card (1995)

Card (1995) used a sample of 24–34-year-old men from the 1976 interview of the NLSY

to estimate the returns to education. The outcome Y is log hourly wage. The treatment

T is years of education. The instrument Z is a binary indicator for the presence of an

accredited four-year college in the local labor market when the respondent was 14 years

old. In his main results, Card (1995, Table 3A, column (5)) includes the following

covariates as X: a quadratic in years of potential experience, a race indicator for Black,

geography indicators for living in the South and in an urban area, a set of indicators

for region of residence in 1966, and an indicator for residence in an urban area in 1966.

All of these terms enter additively, so the covariate specification is not saturated and

might not satisfy rich covariates.

Column (1) of Table 3 reproduces Card’s IV estimate of the returns to education

and OLS estimates of the comparable OLS estimand, βols, that instruments for T with

itself. The original linear IV estimate of .132 uses covariates and increases by about

30% if the covariates are omitted. The RESET test overwhelmingly rejects the null

hypothesis that the specification has rich covariates. By Theorem 1, this is the same

as rejecting the null hypothesis that βiv has a weakly causal interpretation. It doesn’t

necessarily imply that βiv is not equal to βrich, a quantity which does have a weakly

causal interpretation. However, it is important to keep in mind the simple point that

two estimands can be equal even if one has a causal interpretation and the other does

not; the estimates themselves say nothing without an underlying theory to justify their

interpretation.

The DDML estimate of βrich reported in the fourth row is modestly smaller than the

IV estimate of βiv, with a similar standard error. Some perspective on the magnitude

of this difference is given in the row titled relative specification bias, where we report an

estimate of |βiv−βrich|/|βiv| at about .076, or roughly an 8% difference. The subsequent

row reports an estimate of |βiv − βrich|/|βols − βrich|, which at roughly 21% shows that

the difference between βiv and βrich represents a sizable fraction of the “selection bias”

between OLS and the DDML estimate.

The sixth row reports DDML estimates of βacr. While both βrich and βacr are weakly

causal, the DDML estimate of βacr is roughly half the size of the DDML estimate of

βrich, with a comparable standard error. This difference likely reflects the difference in

weights discussed in Section 5.2, providing an empirical illustration of a critique made

by S loczyński (2024). In the sixth row, we report an alternative estimate of βacr that

uses the normalized instrument-propensity score weighting (IPSW) estimator proposed

splits (Chernozhukov et al., 2018, pg. C30). In the applications, we used the Stata ddml package (Ahrens
et al., 2023) together with pystacked (Ahrens et al., 2022) to implement machine learning algorithms from
scikit-learn (Pedregosa et al., 2011).
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Table 3: Comparison of IV estimates for three applications

(1) (2) (3)

Nunn & Dube &
Card (1995) Wantchekon (2011) Harish (2020)

OLS 0.075 (0.004) –0.203 (0.033) 0.115 (0.035)

IV, no covariates 0.188 (0.026) –0.190 (0.111) 1.011 (0.522)

IV, with covariates 0.132 (0.054) –0.271 (0.088) 0.400 (0.211)

PLIV (DDML) 0.122 (0.053) –0.071 (0.091) 0.318 (0.240)

Abadie’s κ — — –0.404 (4.711)

LATE/ACR (DDML) 0.067 (0.046) — 0.203 (0.141)

LATE/ACR (IPSW) 0.085 (0.052) — 0.573 (2.453)

Ramsey RESET test p-val.
(H0 : rich covariates) 0.000 0.000 0.000

Relative specification bias 0.076 0.738 0.204

Specification vs. selection bias 0.213 1.515 0.400

Outcome variable log(hourly wage) Trust in neighors At war
Outcome variable, mean 6.262 1.732 0.296

Treatment variable Years of education log(1 + slave exports) Queen ruling
Treatment variable, mean 13.263 0.621 0.160

Included variables 14 99 66

Sample size 3,010 16,679 3,586

Notes: Heteroskedasticity- or cluster-robust standard errors are reported in parentheses. Standard errors
for Abadie’s κ are block bootstrapped with the top and bottom .5% of the bootstrap distributed trimmed.
Standard errors for IPSW are also computed through block bootstrap. LATE estimates are not reported in
column (2) because the instrument is not binary. Relative specification bias is an estimate of |βiv−βrich|/|βiv|
and specification vs. selection bias is an estimate of |βiv−βrich|/|βols−βrich|. Estimates of E[Z|X] are trimmed
to [.01, .99] for the Dube and Harish (2020) application when using Abadie’s κ and IPSW.

by Uysal (2011), Heiler (2022), and S loczyński et al. (2024). The estimate and standard

error are quite similar to those for DDML.

6.2 Two modern applications

We now turn to two more recent examples. These examples are explicit in their use of

an extensive set of covariates to justify the exogeneity of the instrument.

We first consider an influential paper by Nunn and Wantchekon (2011), who estimate

the effect of the slave trade on modern day measures of trust in Africa using data from

the 2005 Afrobarometer survey. The outcome Y is the respondent’s reported level of
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trust in their neighbors. The treatment T is the natural log of (one plus) total historical

slave exports for the respondent’s ethnic group. The instrument Z is the historical

distance of the respondent’s ethnic group from the nearest coast. In their main results,

Nunn and Wantchekon (2011) include as covariates X a set of country fixed effects, a

set of demographic controls for the respondent, measures of ethnic homogeneity for the

respondent’s district, a set of variables intended to proxy for the amount of European

influence, distance of the ethnic group’s historical homeland to the Saharan slave trade,

and a historical measure of the ethnic group’s reliance on fishing. In total, there are

93 covariates. The authors are explicit that their motivation for incorporating these

covariates is to help ensure the exogeneity of their instrument (Nunn and Wantchekon,

2011, pg. 3239).

Column (2) of Table 3 reproduces the IV estimates from column (2) of Table 6 in

Nunn and Wantchekon (2011) alongside the comparable OLS estimate. The RESET

test again overwhelmingly rejects the null of rich covariates. In this case, the IV estimate

of βiv is almost four times as large as the DDML estimate of βrich, representing one and

a half times the difference in magnitude between the IV and OLS estimates. The DDML

estimate has a similar standard error to the IV estimate. Based on the DDML estimate,

the null hypothesis that the slave trade had no impact on levels of trust would not be

rejected at conventional significance levels, contrary to the central finding of Nunn and

Wantchekon (2011). Note that unconditional ACR estimates are not defined for this

application because the instrument is not binary.

Next, we consider a paper by Dube and Harish (2020), who estimate the effect of

queen rule on war using panel data on the polities of Europe covering the years 1480 to

1913. The outcome Y is a binary indicator for whether a polity-year observation was at

war. The treatment T is a binary indicator for whether a queen ruled in that polity-year.

The instrument Z is an indicator for whether the previous monarch had a legitimate

firstborn male child. The covariates X in their main results (Dube and Harish, 2020,

Table 3, column (3)) are polity and decade identifiers, whether the previous monarchs

were corulers unrelated to one another, whether they had any legitimate children (with

and without missing birth years), and whether the gender of the previous firstborn child

is missing.

Dube and Harish (2020) justify most of their covariates with concerns about exo-

geneity of the instrument. For example, they argue that controlling for whether the

previous monarch had any legitimate children is necessary because the firstborn son

instrument is mechanically zero whenever the previous monarch had no children (Dube

and Harish, 2020, pp. 2601–2602). In Table SA.3 we show that without polity fixed

effects their IV estimates are implausibly large, sometimes exceeding the logical value

of 1, albeit with large standard errors. With both polity and decade fixed effects, but
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without the previous monarch controls, their estimates are close to half as large in

magnitude. Covariates apparently matter substantially for their conclusions.

Dube and Harish (2020, pg. 2605) explicitly invoke a LATE interpretation for their

estimates:

If there are heterogeneous treatment effects, the IV estimate will be the LATE

(Imbens and Angrist 1994). It will tell us the effect for the specific group

of women who were eligible to rule and induced into ruling because of the

presence of a firstborn female or sister among previous monarchs (i.e., the

set of women who were compliers).

Both the treatment and instrument are binary, so the idea of a single LATE as intro-

duced in Imbens and Angrist (1994) is well-defined. However, even if covariates are

rich, linear IV estimates not an unconditional LATE, but βrich, which is a statistically-

weighted average of different covariate-specific LATEs. If covariates are not rich, then

βiv is not even weakly causal, let alone an estimate of the LATE.

Column (3) of Table 3 replicates Table 3, column (3) of Dube and Harish (2020)

along with the comparable OLS estimates. The RESET test once again overwhelmingly

rejects the null hypothesis that βiv is weakly causal. The DDML estimate of βrich is

about 20% smaller than the original estimate, or 40% of the difference between the

original IV and OLS estimates. While estimated with similar precision as linear IV, it

is no longer significantly different from zero at conventional levels.

In the fifth row of column (3), we report the κ-weighting estimator discussed in

Section 5.3, which we can apply here because both the instrument and treatment are

binary. The estimates of κ use a logit to estimate E[Z|X]. Proposition 7 showed that

this estimator will converge to βiv = βrich if rich covariates hold. In this application, we

find that the resulting estimate is has the opposite sign and is extremely noisy. This

may be because of the large number of fixed effects, which makes it difficult to estimate

a logit.

Because the instrument is binary, we can also estimate βacr using either DDML or

IPSW. The treatment is also binary, so βacr = βlate ≡ E[Y (1) − Y (0)|D(1) > D(0)].

The DDML estimate of βlate is about half the size of the original IV estimate and

about two thirds the size of the DDML estimate of βrich. Although it is estimated more

precisely, it is not statistically different from zero at conventional levels. The IPSW

estimate of βlate is larger than the original IV estimate, but extremely noisy. As with

the κ-weighting estimator, this may be because of the large number of fixed effects.
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Figure 5: Relative magnitude across several applications
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Notes: These figures present the absolute difference between linear IV and DDML estimates relative to the
linear IV estimate (panel A) and relative to the difference between the OLS and DDML estimates (panel
B). The definitions of the two relative biases are as in Table 3. Details on the sample size and number of
included variables for each specification are provided in Table SA.5.
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6.3 Patterns from multiple studies

To conduct a more systematic evaluation, we return to our survey of IV papers from

Section 2.4. We consider all papers from the survey for which data was available and

for which we were able to replicate the main IV estimates. We limit our attention to

papers that fit the framework of Section 4 with a single endogenous variable and a

single instrument used as the sole excluded variable. We omit papers that use panel

data with two-way fixed effects, as their implementation with DDML requires more

complex methods (e.g. Semenova et al., 2023). Imposing these restrictions leaves us

with ten studies. For comparison, we also include Card (1995), Nunn and Wantchekon

(2011), and Dube and Harish (2020), bringing the total to thirteen.

Figure 5 summarizes the differences between the IV estimate of βiv and the DDML

estimate of βrich for the main specification in each of these thirteen studies. Panel (a)

measures the differences relative to the original IV estimates, while panel (b) measures

them relative to the difference between the original IV and comparable OLS estimates.

The bars are shaded according to whether the RESET test rejects the null that βiv is

weakly causal at the 1% level. Table SA.4 provides tabular results for each study and

shows that standard errors for the IV and DDML estimates are generally similar.

The RESET test rejects in nine out of the thirteen studies, implying that for most

of these studies βiv is not weakly causal. The magnitude of the difference between the

IV estimate of βiv and the DDML estimate of βrich varies across studies, but is often

large measured either relative to the original estimates or relative to the difference

between the OLS and IV estimates. Cases when this difference is large are reliably

detected by the RESET test. The one exception, Alesina and Zhuravskaya (2011), has

only 97 observations, so is likely underpowered. Conversely, the studies for which the

RESET test does not reject also tend to exhibit small differences between the IV and

DDML estimates, suggesting that βiv = βrich, and that the original linear IV estimate

is indeed weakly causal. For some studies, such as Dippel (2014), the RESET test

rejects, but the difference between the IV and DDML estimates is fairly small. This is

not a contradiction: two numbers can be equal even if one is a non-negative weighted

average and the other is not. Someone who finds this possibility troubling is expressing

dissatisfaction with only imposing the extremely weak requirement of weak causality.

7 Conclusion and recommendations for practice

In discussing the LATE interpretation of linear IV estimates, Angrist and Krueger

(1999, pg. 1326) conjectured:

That is, IV estimates in models with covariates can be thought of as producing

a weighted average of covariate-specific Wald estimates as long as the model
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for covariates is saturated . . . . In other cases it seems reasonable to assume

that some sort of approximate weighted average is being generated, but we

are unaware of a precise causal interpretation that fits all cases.

We have shown that this seemingly-reasonable assumption is false. Unless rich covari-

ates is satisfied, the linear IV estimand cannot be interpreted as “weakly causal,” and

so cannot be interpreted as a non-negatively weighted average of LATEs. We tested

the null hypothesis of rich covariates in several empirical studies and found that it was

commonly rejected.

Based on our theoretical results and empirical applications, we recommend that

researchers using linear IV estimators take the following steps.

1. Consider the role of covariates in the IV analysis. If covariates are not essential

for justifying instrument exogeneity, then report estimates without covariates.

Estimates with covariates can still be reported if the covariates are helpful for

precision. If covariates play an important role in justifying exogeneity, then think

carefully about which covariates ought to be included and why. Using a “kitchen

sink” approach to controlling for covariates makes it less likely that rich covariates

is satisfied and so more likely that the resulting IV estimate is not weakly causal.

2. Report the Ramsey (1969) RESET test for a regression of the instrument on the

covariates. The null hypothesis of this test is equivalent to the null hypothesis

that rich covariates holds, which our results show is also equivalent to the null

hypothesis the IV estimand is weakly causal for the types of IV specifications

considered in the main text. The RESET test can be implemented in Stata with

the command estat ovtest and in R through the resettest function in the

lmtest package (Zeileis and Hothorn, 2002).12 If the RESET test rejects, then

proceed to the next step. Otherwise, proceed to step four.

3. Estimate βrich and report the result alongside the linear IV estimate of βiv. The

DDML estimator of βrich can be viewed as a nonparametric estimator and seems

to perform well in our simulations. A Stata implementation of DDML has been

developed by Ahrens et al. (2023). There are at least two R packages (Ahrens

et al., 2024a; Bach et al., 2024).

4. If the instrument is binary, then estimate the unconditional ACR, βacr, which is

equal to the unconditional LATE, βlate, if the treatment is also binary. This can

be implemented with DDML in either Stata or R. It can also be implemented in

12Testing whether a TSLS estimand with multiple excluded variables is weakly causal is less straightforward
because the rich covariates condition now concerns the conditional mean of the aggregated excluded variables
(see Section 4.4). A bootstrapped version of the RESET test may be an adequate solution in this case. See
our working paper (Blandhol et al., 2022) for more details and an example.
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Stata with IPSW (S loczyński et al., 2024). We are not aware of an IPSW package

for R, although it is straightforward to construct point estimates by fitting a binary

response model and then constructing four weighted means.

It is important to emphasize that the criterion of “weakly causal” used throughout

the analysis is an extremely weak one. Being weakly causal may be necessary for a

quantity to represent an interesting causal effect, but it is not sufficient. Even if rich

covariates is satisfied, βrich may be hard to interpret. As we showed empirically, it can

also be quite different from a more interpretable quantity, such as the unconditional

ACR, βacr, or unconditional LATE, βlate.

These interpretation difficulties were already reason to explore alternative IV meth-

ods designed to estimate quantities, such as an unconditional LATE or the average

treatment on the treated, that are not only weakly causal but also have clear counter-

factual interpretations. Such methods rely on explicitly stated parametric assumptions

(e.g. Heckman, 1976; Imbens and Rubin, 1997; Heckman et al., 2003) or are semipara-

metric (e.g. Carneiro et al., 2011; Brinch et al., 2017; Mogstad et al., 2018; S loczyński

et al., 2024) or nonparametric (e.g. Heckman and Vytlacil, 1999; Manski and Pepper,

2000; Chernozhukov et al., 2018). By showing that common interpretations of linear

IV estimands also rely on either parametric assumptions or nonparametric implemen-

tations, our findings provide another reason to pursue such approaches.

A Proofs

Proof of Proposition 1. The expression for βiv is a special case of Proposition 2 with

ϵ = 1.

If E[TZ̃] > 0, then because E[Z|X] ∈ [0, 1] for binary Z, the sign of ω(cp, X)

depends on the sign of 1 − L[Z|X], which is negative if and only if L[Z|X] > 1. The

sign of ω(at, X) varies with X according to the sign of E[Z̃|X]. Because X contains a

constant, E[E[Z̃|X]] = E[Z̃] = 0, so E[Z̃|X] is either zero with probability 1, or else it

has positive probability of taking both positive and negative values. In the latter case,

the sign of ω(at, X) is negative for some values of X regardless of whether E[TZ̃] is

positive or negative. Q.E.D.

Proof of Proposition 2. The numerator of βiv can be written as

E[Y Z̃] = E
[
E
[
Y Z̃|X

]]
= E [C[Y,Z|X]] + E

[
E[Y |X] E[Z̃|X]

]
, (20)

where C denotes covariance. The same argument as in Imbens and Angrist (1994)
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applied conditional-on-covariates yields

C[Y,Z|X] = ∆(cp, X) C[T,Z|X] = ∆(cp, X) P[G = cp|X] E[Z|X](1 − E[Z|X]).

(21)

As for the second term of (20),

E [Y |X] = E [Y |G = at, X] P [G = at|X] + E [Y |G = nt, X] P [G = nt|X]

+ E [Y |G = cp, X] P [G = cp|X]

= E [Y (1)|G = at, X] P [G = at|X] + E [Y (0)|G = nt, X] P [G = nt|X]

+ E [(1 − Z)Y (0) + ZY (1)|G = cp, X] P [G = cp|X] . (22)

Adding and subtracting E[Y (0)|G = at, X] P[G = at|X] gives

E [Y |X] = ∆(cp, X) P[G = cp|X] E[Z|X] + ∆(at, X) P[G = at|X] + η′0X (23)

due to both the exogeneity of Z and the linearity assumption on E[Y (0)|X = x].

Alternatively, adding and subtracting E[Y (1)|G = nt, X] P[G = nt|X] to (22) gives

E [Y |X] = ∆(cp, X) P[G = cp|X](E[Z|X] − 1) − ∆(nt, X) P[G = nt|X] + η′1X.

(24)

So multiplying (23) by ϵ and summing it with (24) multiplied by 1 − ϵ gives

E[Y |X] = ∆(cp, X) P[G = cp|X] (E[Z|X] + ϵ− 1) + ∆(at, X)ϵP[G = at|X]

+ ∆(nt, X)(ϵ− 1) P[G = nt|X] + ϵη′0X + (1 − ϵ)η′1X.

Because X and Z̃ are orthogonal,

E
[
E[Y |X] E[Z̃|X]

]
= E

[
∆(cp, X) P[G = cp|X] (E[Z|X] + ϵ− 1) E[Z̃|X]

+ ∆(at, X)ϵP[G = at|X] E[Z̃|X]

+ ∆(nt, X)(ϵ− 1) P[G = nt|X] E[Z̃|X]
]
. (25)

Summing (21) and (25), and noting that

E[Z|X](1 − E[Z|X]) + (E[Z|X] + ϵ− 1) E[Z̃|X]

=
(

E[Z|X] − E[Z̃|X]
)

(1 − E[Z|X]) + ϵE[Z̃|X]

= L[Z|X](1 − E[Z|X]) + ϵE[Z̃|X]
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yields a weighting expression with weights proportional to the claimed expression but

missing a common multiple of E[Z̃T ]−1, which comes from the denominator of βiv.

Q.E.D.

Proof of Proposition 3. Note that T is only stochastic due to Z after conditioning

on X and G, as a direct consequence of the definition of G. Assumption EXO then im-

plies that T and Y (t) are independent conditional on X and G. We use this observation

to write

β =
∑
g,x

E
[
b(T, x, Z)Y

∣∣G = g,X = x
]

P[G = g,X = x]

=
∑
g,x,j

E
[
1[T = tj ]b(tj , x, Z)Y (tj)

∣∣G = g,X = x
]

P[G = g,X = x]

=
∑
g,x,j

µj(g, x) E
[
1[T = tj ]b(tj , x, Z)

∣∣G = g,X = x
]

P[G = g,X = x]

≡
∑
g,x,j

µj(g, x)ψj(g, x),

where all summations are taken over g ∈ G, x ∈ X , j ∈ {0, 1, . . . , J}, and

ψj(g, x) ≡ E
[
1[T = tj ]b(tj , x, Z)

∣∣G = g,X = x
]

P[G = g,X = x].

Notice that ωj(g, x) =
∑J

k=j ψk(g, x), so that (6) follows from Lemma 1.

Q.E.D.

Lemma 1. For any constants {aj , cj}Jj=0,

J∑
j=0

ajcj = a0c̃0 +
J∑

j=1

(aj − aj−1)c̃j ,

where c̃j ≡
∑J

k=j ck.

Proof of Lemma 1. Since cj = c̃j − c̃j+1,

J∑
j=0

ajcj =

J∑
j=0

aj (c̃j − c̃j+1)

= a0c̃0 +

J∑
j=1

aj c̃j +

J−1∑
j=0

aj c̃j+1 = a0c̃0 +

J∑
j=1

(aj − aj−1)c̃j ,

where the final equality used a change of variables in the second summand from j to

j + 1. Q.E.D.
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Proof of Proposition 4. If ωj(g, x) ≥ 0 and ω0(g, x) = 0 for all g and x, then it

follows immediately from (6) that β satisfies Definition WC.

We will prove the converse by contraposition. That is, we will show that if either

the non-negative weights or level independence condition is not satisfied, then there

exists a µ such that µj(g, x) − µj−1(g, x) has the same sign for every j ≥ 1, and all g

and x, and that this common sign is different from the sign of β. This shows that if the

weights do not satisfy both the non-negative and level independence conditions, then

β is not weakly causal. Or, by contraposition, if β is weakly causal, then the weights

satisfy both conditions.

First, suppose that the level independence condition does not hold, but that the non-

negative weights condition does hold. Then there exists a (g⋆, x⋆) such that ω0(g
⋆, x⋆) ̸=

0, but wj(g, x) ≥ 0 for all j ≥ 1, g, and x. Set

µj(g, x) =


µ̄, if (g, x) ̸= (g⋆, x⋆)

µ⋆, if (g, x) = (g⋆, x⋆) and j < j⋆

µ⋆ + ∆⋆, if (g, x) = (g⋆, x⋆) and j ≥ j⋆

, (26)

where µ̄, µ⋆, and ∆⋆ are numbers we will choose, and j⋆ ≥ 1 can be chosen arbitrarily.

Then µj(g, x) − µj−1(g, x) is zero for all (g, x) ̸= (g⋆, x⋆), while for (g, x) = (g⋆, x⋆) it

is ∆⋆ when j = j⋆ and zero otherwise. In particular, the sign of µj(g, x)− µj−1(g, x) is

the sign of ∆⋆ for all j ≥ 1 and all (g, x), regardless of the values of µ̄ and µ⋆. If µ is

specified as in (26) with µ̄ = 0 for simplicity, then (6) becomes

β = ω0(g
⋆, x⋆)µ⋆ + ωj⋆(g⋆, x⋆)∆⋆. (27)

Fix any µ⋆ ̸= 0, so that ω0(g
⋆, x⋆)µ⋆ ̸= 0. If ω0(g

⋆, x⋆)µ⋆ > 0, then choose a

∆⋆ < 0 that is sufficiently small in magnitude so that ωj⋆(g⋆, x⋆)∆⋆ > −ω0(g
⋆, x⋆)µ⋆.

Then from (27) we have β = ω0(g
⋆, x⋆)µ⋆ + ωj⋆(g⋆, x⋆)∆⋆ > 0, so that these choices

of µ⋆ and ∆⋆ produce a µ that violates the second condition of Definition WC. Sim-

ilarly, if ω0(g
⋆, x⋆)µ⋆ < 0, then choose ∆⋆ > 0 to be sufficiently small to ensure that

ωj⋆(g⋆, x⋆)∆⋆ < −ω0(g
⋆, x⋆)µ⋆, so that β < 0, contradicting the first condition of Defi-

nition WC.

On the other hand, suppose that the non-negative weights condition does not hold,

so there exist a j⋆, g⋆, and x⋆ such that ωj⋆(g⋆, x⋆) < 0. Use the same construction

as in (26) with these new values of j⋆, g⋆, and x⋆, where j⋆ is no longer arbitrary. Set

µ⋆ = 0. Then (27) reduces to

β = ωj⋆(g⋆, x⋆)∆⋆.
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Selecting any ∆⋆ > 0 produces β < 0, establishing the existence of a µ that violates

the first condition of Definition WC. Q.E.D.

Proof of Theorem 1. We evaluate the sufficient and necessary conditions in Propo-

sition 4 using the expressions for ωj(g, x) given in (37).

First, consider the level independence condition, which given (37) can be written as

ω0(g, x) = E[Z̃T ]−1 E[Z̃|G = g,X = x] P[G = g,X = x] = 0 (28)

for all g and x. Assumption EXO implies that Z̃ ≡ Z − L[Z|X] is independent of G

given X, so

E[Z̃|G = g,X = x] = E[Z̃|X = x] = E[Z|X = x] − L[Z|X = x].

For every x there exists a g ∈ G such that P[G = g,X = x] > 0, because G exhaustively

partitions possible choice types. So (28) can hold for every g and x if and only if

E[Z|X = x] = L[Z|X = x]

for every x, that is, if and only if the specification has rich covariates. In particular, if

the specification does not have rich covariates, then (28) is non-zero for some g and x,

and so by Proposition 4, βiv is not weakly causal.

To establish the sufficient direction, suppose that the specification has rich covariates

and consider the non-negative weights condition in Proposition 4. Let Zj(g) denote

the set of instrument values for which individuals in choice group g would choose a

treatment value tj or larger. Then

ωj(g, x) = E[Z̃T ]−1 E
[
Z̃1[T ≥ tj ]

∣∣∣G = g,X = x
]

P[G = g,X = x]

= E[Z̃T ]−1 E
[
Z̃1[Z ∈ Zj(g)]

∣∣∣G = g,X = x
]

P[G = g,X = x]

= E[Z̃T ]−1 C
[
Z, 1[Z ∈ Zj(g)]

∣∣∣X = x
]

P[G = g|X = x] P[X = x], (29)

where the third equality follows from Assumption EXO and the hypothesis of rich

covariates. Given rich covariates,

E[Z̃T ] = E[(Z − E[Z|X]) E[T |X,Z]] = E [C[Z,E[T |X,Z]|X]] , (30)

which is non-negative because Assumptions EXO and MON imply that E[T |X,Z] is

a weakly increasing function of Z (Angrist and Imbens, 1995; Vytlacil, 2002), and the

covariance between two weakly increasing functions is non-negative (e.g. Thorisson,

1995, Section 2).
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It remains to determine the sign of the covariance term in (29). Suppose that

P[G = g|X = x] > 0. Then the function z 7→ 1[z ∈ Zj(g)] must be weakly increasing.

For otherwise, there would exist z, z′ with z < z′ and z ∈ Zj(g) but z′ /∈ Zj(g), meaning

that for group g, instrument value z leads to T (z) ≥ tj , while instrument value z′ leads

to T (z) < tj . Given that P[G = g|X = x] > 0, this would imply that

P[T (z) ≥ tj > T (z′)|X = x] ≥ P[G = g|X = x] > 0,

in contradiction with Assumption MON. It follows that the covariance term in (29)

is non-negative, again because the covariance of two increasing functions of Z is non-

negative. We conclude that ωj(g, x) ≥ 0 for all j, g, and x, which by Proposition 4

shows that βiv is weakly causal. Q.E.D.

Proof of Proposition 5. Write (10) as

βiv = ∆ + E[Z̃T ]−1 E[Z̃ E[Y (t0)|Z,G,X]]

= ∆ + E[Z̃T ]−1 E[Z̃ E[Y (t0)|G,X]]

= ∆ + E[Z̃T ]−1 E[E[Z̃|X] E[Y (t0)|G,X]] ≡ ∆ +
∑
g,x

ω0(g, x)µ0(g, x),

where ω0(g, x) is as defined as (37), noting that E[Z̃|G,X] = E[Z̃|X] due to Assumption

EXO. If rich covariates holds, then ω0(g, x) = 0 for all g and x, so that βiv = ∆ is weakly

causal by Proposition 4. Conversely, if rich covariates does not hold, then, as shown in

the proof of Theorem 1, there exists a (g, x) such that ω0(g, x) ̸= 0, so βiv is not weakly

causal, again by Proposition 4. Q.E.D.

Proof of Proposition 6. Given Assumption CLE, Assumption LIN also implies that

E[Y (t0)|X = x] = E[Y (tj) − Y (t0)|X = x] + E[Y (tj)|X = x] = ∆(tj − t0) + η′x,

so that E[Y (t0)|X = x] = η′0x, where η0 is the same as η but has ∆(tj − t0) added to

the coefficient on the constant component of x. Because Z̃ is orthogonal to X,

E[Z̃Y (t0)] = E[E[Z̃|X] E[Y (t0)|X]] = E[E[Z̃|X]X]′η0 = E[Z̃X ′]η0 = 0.

From (10), this implies that βiv = ∆, as claimed. Q.E.D.

Proof of Proposition 7. Abadie (2003, Proposition 5.1) showed that if rich covari-

ates is satisfied, then the linear IV estimate is numerically equal to the κ-weighting

estimate, implying that βabadie = βiv, with βiv = βrich by definition in that case.

For the converse, consider the κ-weighting linear regression, which Abadie showed is

the same as an unweighted linear regression of Y on T and X among the subpopulation
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G = cp of compliers. Assumption MON implies that P[T = Z|G = cp] = 1. Assump-

tion EXO then implies that (Y (0), Y (1)) is independent of T conditional on G = cp.

Corollary 1 therefore implies that the population coefficient on T in the κ-weighting

regression is weakly causal if and only if E[T |X,G = cp] = L[T |X,G = cp] ≡ γ′X for

some γ. However, Assumption EXO implies that

γ′X ≡ L[T |X,G = cp] = E[T |X,G = cp] = E[Z|X,G = cp] = E[Z|X], (31)

which implies that E[Z|X] is linear in X, and therefore that E[Z|X] = L[Z|X], so that

rich covariates is satisfied. Q.E.D.
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Supplemental Appendix
SA.1 Rich covariates under conditional random assignment

Suppose that X = (X1, X2) has two components and that Z is randomly assigned

conditional on X1. This could happen in a stratified experiment, where X1 describes

the strata. It could also happen in other settings, for example if judges Z are thought

to be randomly assigned, but only conditionally on the day of the week, X1. The rich

covariates condition is still the same in this case: E[Z|X1, X2] = L[Z|X1, X2]. However,

random assignment implies that rich covariates reduces to the requirement that

E[Z|X1] = L[Z|X1, X2], (32)

because Z is independent of X2, given X1. In some situations, it will be natural to

control for X1 nonparametrically, for example using strata or day-of-week indicators.

If this is done, then (32) reduces further to the requirement that

L[Z|X1] = L[Z|X1, X2]. (33)

Condition (33) can be evaluated by regressing Z onto X1 and X2, then testing the null

hypothesis that the coefficients on X2 are zero.

SA.2 Generalizations

In this appendix, we generalize the discussion in the main text by considering spec-

ifications with more general forms of excluded variables. In doing so, we extend the

results in S loczyński (2020, 2024) about negative weighting under weaker forms of the

monotonicity condition to settings with non-binary treatments and/or non-binary in-

struments.

SA.2.1 TSLS specification and estimand

We now consider specifications with a vector of excluded variables (excluded instru-

ments), I ≡ i(Z,X), where i is a known, vector-valued function. As in the main text,

we continue to assume that the specification has a single endogenous variable, T . With

a vector of excluded variables there is now a question of how to weight them. We

consider the widely-used TSLS weighting with first stage variables F ≡ [I ′, X ′]′ and

second stage variables S ≡ [T,X ′]′.

One way to interpret the first stage of TSLS is as a procedure for reducing the first

stage variables F down to the same dimension as S by transforming I into a scalar.
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That is, the first stage of TSLS replaces the vector of instruments I by the scalar

“effective instrument”

Ż ≡ γ′I,

where γ is the vector of population coefficients on I in the first stage regression of T on

I and X. The vector estimand of second stage coefficients, which we denote by αtsls,

can then be written as the standard IV estimand that uses Ḟ ≡ [Ż,X ′]′ as instruments

for S ≡ [T,X ′]′, that is

αtsls = E[ḞS′]−1 E[Ḟ Y ]. (34)

Alternatively, the first stage of TSLS can be viewed as constructing fitted values for

the treatment,

Ṫ ≡ Ż + λ′X ≡ γ′I + λ′X, (35)

where λ is the vector of population coefficients on X in the first stage regression. The

TSLS estimand is then the OLS estimand from a regression of Y onto Ṫ and X.13

We assume that the standard rank condition holds, so that αtsls exists. Our interest

is in the component of αtsls that corresponds to the coefficient on T , which we call βtsls.

The following proposition generalizes expression (8) for βiv to βtsls.

Proposition SA.1. Let Z̃ ≡ Ż − L[Ż|X] denote the population residuals, where

L[Ż|X] ≡ E[ŻX ′] E[XX ′]−1X are the population fitted values from regressing Ż onto

X. Then

βtsls =
E[Z̃Y ]

E[Z̃2]
=

E[Z̃Y ]

E[Z̃T ]
= E

[(
Z̃

E[Z̃T ]

)
Y

]
.

Proof of Proposition SA.1. The well-known two stage interpretation of αtsls is

αtsls = E[ṠṠ′]−1 E[ṠY ], (36)

where Ṡ ≡ L[S|F ] ≡ E[SF ′] E[FF ′]−1F are the fitted values from the population first

stage regression. Because X is a subvector of both S and F , Ṡ = [Ṫ ′, X]′, where Ṫ is

the population fitted value from the first stage regression of T on I and X. Applying

the Frisch-Waugh-Lovell Theorem to the second step regression (with full vector of

13Our definition of the TSLS estimand presumes the standard asymptotic framework where the number of
observations is growing and the dimensions of I and X are fixed. Kolesár (2013) and Evdokimov and Kolesár
(2019) consider alternative frameworks that allow for the dimensions of either or both of these vectors to also
be growing.
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coefficients (36)), the component of αtsls corresponding to the coefficient on Ṫ can be

written as

βtsls = E[RY ]/E[R2],

where R ≡ Ṫ−L[Ṫ |X] are the residuals from projecting the population fitted treatment

variable, Ṫ , onto the covariates, X. Using (35), these residuals can be written as

R ≡ Ṫ − L[Ṫ |X] =
(
Ż + λ′X

)
− L

[
Ż + λ′X|X

]
= Ż − L[Ż|X] ≡ Z̃.

This shows that βtsls = E[Z̃Y ]/E[Z̃2]. Because Z̃ is a residual from a projection onto

X, we can also use (35) to write

E[Z̃2] = E[Z̃Ż] = E[Z̃(Ṫ − λ′X)] = E[Z̃T ] − E[Z̃(T − Ṫ )] = E[Z̃T ],

where the final equality follows because Z̃ is a linear function of I and X, and therefore

orthogonal to the first stage residuals, T − Ṫ . Q.E.D.

Applying Proposition 3 to Proposition SA.1 shows that βtsls can be written as

β =
∑
g,x

ω0(g, x)µ0(g, x) +
∑
g,x

J∑
j=1

ωj(g, x) (µj(g, x) − µj−1(g, x)) , (6)

with weights given by

ωj(g, x) = E[Z̃2]−1 E
[
1[T ≥ tj ]Z̃|G = g,X = x

]
P[G = g,X = x]. (37)

As shown in Proposition 4, whether βtsls is weakly causal is determined by ωj(g, x),

which is determined by the TSLS specification through Z̃.

SA.2.2 Rich covariates in more general TSLS specifications

The necessary direction of Theorem 1 extends immediately, just with a more general

definition of Z̃.

Corollary SA.1. Suppose that Assumptions EXO is satisfied. If βtsls is weakly causal,

then γ′ E[Z|X = x] = γ′L[Z|X = x] for every x ∈ X .

Proof of Corollary SA.1. If βtsls is weakly causal, then Proposition 4 implies that

ω0(g, x) = 0 for all g and x. Using the same argument as in the proof of Theorem 1

with the form of ω0 given in (37), this implies that for every x,

0 = E[Z̃|X = x] ≡ E[Ż|X = x] − L[Ż|X = x] = γ′ E[Z|X = x] − γ′L[Z|X = x].
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Q.E.D.

The condition in Corollary SA.1 is a generalization of rich covariates from the case in

which i(Z,X) = Z is scalar, so that γ cancels out, to TSLS specifications with vectors

of excluded variables.

SA.2.3 Monotonicity-correct first stages

Corollary SA.1 shows that rich covariates is necessary for βtsls to be weakly causal, but

unlike Theorem 1, it does not establish sufficiency. The reason is that with more general

TSLS specifications one also has to consider the specification of the first stage relative

to the maintained monotonicity condition. In this section, we derive the additional

sufficient-and-necessary characterization of the missing piece.

We begin by stating a weaker form of the monotonicity condition (Assumption

MON). We follow S loczyński (2020, 2024) in calling this “weak” monotonicity.

Assumption WMON. (Weak monotonicity) For all x ∈ X , and all z, z̄ ∈ Z, either

P[T (z̄) ≥ T (z)|X = x] = 1

or P[T (z) ≥ T (z̄)|X = x] = 1.

Assumption WMON is weaker than Assumption MON monotonicity because it allows

the direction of monotonicity to depend on x. For example, if Z = {0, 1} and X =

{0, 1}, then Assumption WMON allows for

P[T (1) ≥ T (0)|X = 0] = 1

and P[T (0) ≥ T (1)|X = 1] = 1. (38)

If, for example, T = {0, 1} is also binary, then group G = (0, 1) would be compliers

conditional on X = 0, but they would be defiers conditional on X = 1, and conversely

for G = (1, 0).

For any x, the order in which Assumption WMON holds between two instrument

values can be determined by the conditional mean of T ,

p(z, x) ≡ E[T |Z = z,X = x].

If p(z̄, x) ≥ p(z, x) then T (z̄) ≥ T (z) conditional on X = x, and conversely (Imbens and

Angrist, 1994; Vytlacil, 2002). We say that the first stage of the TSLS specification is

monotonicity-correct if the first stage fitted values reproduce this ordering, in the sense

of predicting higher values of treatment when the instrument is such that individuals

choose higher values of treatment.
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Definition MC. Let ṫ(z, x) ≡ γ′i(z, x) + λ′x denote the population fitted values in

the first stage regression for a realization with Z = z and X = x. Suppose that (z, z̄)

are both in the support of Z, conditional on X = x. Then a TSLS first stage is

monotonicity-correct for (z, z̄) conditional on X = x, if

(p(z̄, x) − p(z, x)) ×
(
ṫ(z̄, x) − ṫ(z, x)

)
≥ 0.

Definition MC is easiest to appreciate in the case with T = {0, 1}, I = Z, and

Z ∈ {0, 1}, so that ṫ(1, x) − ṫ(0, x) = γ is the scalar coefficient on Z in the first stage

regression. If Assumption WMON holds with T (1) ≥ T (0) conditional on X = x, then

p(1, x)−p(0, x) ≥ 0. The TSLS first stage is monotonicity-correct conditional on X = x

if and only if γ ≥ 0, so that the linear projection in the first stage reproduces the same

sign as the (nonparametric) treatment propensity score.

Including interactions between covariates and instruments in the first stage can

help ensure monotonicity-correctness. For example, suppose that X contains a binary

component, X1 ∈ {0, 1}, and that I = [Z,ZX1]
′ now has two components with first

stage coefficient vector [γ1, γ2]
′, so that for any realization of the other components x−1

of X,

ṫ(1, x1 = 0, x−1) − ṫ(0, x1 = 0, x−1) = γ1

and ṫ(1, x1 = 1, x−1) − ṫ(0, x1 = 1, x−1) = γ1 + γ2.

This first stage can still be monotonicity-correct conditional on all values of X =

(x1, x−1), even if the direction of Assumption WMON is positive when x1 = 0 and

negative when x1 = 1, as in (38). The requirement is that γ1 ≥ 0 and γ1 + γ2 ≤ 0.

Whether this requirement holds depends on the stochastic relationship between Z and

the other components, X−1.

The following proposition shows that the missing sufficient condition for Corollary

SA.1 has to do with the monotonicity-correctness of its first stage specification. It also

shows that if Assumption MON is weakened to Assumption WMON, then monotonicity-

correctness characterizes the additional necessary condition beyond rich covariates that

the TSLS specification must satisfy in order for βtsls to be weakly causal.

Proposition SA.2. Suppose that Assumptions EXO and WMON are satisfied. Sup-

pose that the TSLS specification for βtsls has rich covariates in the sense of Corollary

SA.1. If the TSLS specification is monotonicity-correct for every (z, z̄), conditional on

every x, then βtsls is weakly causal. Conversely, if βtsls is weakly causal, then for every

x ∈ X the TSLS first stage must be monotonicity-correct for at least one pair (z, z̄).

Proof of Proposition SA.2. Because rich covariates is assumed, we already know
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that ω0(g, x) = 0 by Corollary SA.1. We also have an expression for ωj(g, x) that is

similar to (29) in the proof of Theorem 1:

ωj(g, x) = E[Z̃2]−1 C
[
ṫ(Z,X), 1[Z ∈ Zj(g)]

∣∣∣X = x
]

P[G = g|X = x] P[X = x], (39)

where only differences are that ṫ(Z,X) replaces Z, and that the denominator term,

E[Z̃2], is already clearly non-negative given the way we’ve redefined Z̃ ≡ Ż−L[Ż|X] ≡
γ′(Z −L[Z|X]) in terms of the effective instrument. The sign of ωj(g, x) is determined

solely by the covariance term if P[G = g|X = x] > 0, while ωj(g, x) = 0 for any other

(g, x) pairs.

Fix any x ∈ X . Assumption WMON allows the direction of monotonicity to vary

with x, so first enumerate the support of Z as {z0, z1, . . . , zK} in order of the treat-

ment propensity score, that is, such that p(zk−1, x) ≤ p(zk, x) for k = 1, . . . ,K, with

any ties being broken arbitrarily. This ordering depends on x, but x has been fixed

on the outset, so we keep that implicit in the notation. Now we are going to re-

parameterize the covariance term by the indices of Z, so that the second term is mono-

tonic in the treatment propensity score. Do this by defining the bijective function

ζ : {0, 1, . . . ,K} 7→ {z0, z1, . . . , zK} that maps indices to support points of Z, then let

M ≡ ζ−1(Z), so that Z = ζ(M). Then we can write the covariance term as

C
[
ṫ(Z,X), 1[Z ∈ Zj(g)]

∣∣∣X = x
]

= C
[
ṫ(ζ(M), X), 1[ζ(M) ∈ Zj(g)]

∣∣∣X = x
]
.

The same argument as in the proof of Theorem 1 now shows that the function k 7→
1[ζ(k) ∈ Zj(g)] must be weakly increasing under Assumption MON for any group g

with P[G = g|X = x] > 0, because p(ζ(k), x) ≥ p(ζ(k − 1), x), by construction.

Now suppose that the TSLS specification is monotonicity-correct for every (z, z̄)

pair, conditional on any x. Then k 7→ ṫ(ζ(k), x) is also a weakly increasing function

of k: as k increases, p(ζ(k), x) increases, by construction, and hence so does ṫ(ζ(k), x),

by hypothesis. It follows that the covariance term is also non-negative (e.g. Thorisson,

1995, Section 2), so that ωj(g, x) is non-negative as well. This statement holds for any

j, as well as for any g, because ωj(g, x) = 0 if P[G = g|X = x] = 0. It also holds for

any x after defining the indices and ζ function as above. By Proposition 4, we conclude

that βtsls is weakly causal.

Conversely, suppose that βtsls is weakly causal, so that ωj(g, x) ≥ 0 for all j, g, and

x. If x is such that ṫ(z, x) is a constant function of z, then the TSLS specification is

trivially monotonicity-correct for every (z, z̄) given x. So, focus on any x for which

ṫ(z, x) is non-constant. Using this x, re-order Z by the treatment propensity score in

the same fashion as above. Suppose k 7→ ṫ(ζ(k), x) were weakly decreasing. Then the

covariance term would be strictly negative, because k 7→ ṫ(ζ(k), x) is non-constant, and
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k 7→ 1[ζ(k) ∈ Zj(g)] is weakly increasing and non-constant. This would contradict the

hypothesis that ωj(g, x) ≥ 0, so it must be that k 7→ ṫ(ζ(k), x) is not weakly decreasing.

As a consequence, there must exist a k such that ṫ(ζ(k), x) > ṫ(ζ(k − 1), x). Because

p(ζ(k), x) ≥ p(ζ(k − 1), x), this shows that the TSLS specification is monotonicity-

correct for (ζ(k), ζ(k − 1)) given x. Q.E.D.

Special cases of the sufficient condition in Proposition SA.2 appear in Angrist and

Imbens (1995), Angrist and Pischke (2009), Kolesár (2013), and S loczyński (2020, 2024).

The saturate and weight specification in Angrist and Imbens (1995) and Angrist and

Pischke (2009) has a first stage specification that is saturated in both the instruments

and covariates, which is automatically monotonicity-correct for any instrument pair,

conditional on any covariate value, because it has ṫ(z, x) = p(z, x). Kolesár (2013)

relaxes this to Definition MC, although stated somewhat differently, and provides a

result like the sufficient direction of Proposition SA.2. See also Heckman and Vytlacil

(2005, Section 4.3) and Heckman (2010, Section 3.4).

A special case of the necessary direction of Proposition SA.2 was shown by S loczyński

(2020, 2024) for the case when both Z and T are binary. S loczyński (2020, 2024) ob-

serves that if one were to use the linear IV specification with i(Z,X) = Z discussed

in the main text, if X were saturated, and if Assumption WMON held but Assump-

tion MON did not hold, then βtsls would not be weakly causal, because some covariate

groups would have negatively-weighted treatment effects. This case follows from Propo-

sition SA.2 because there is only a single coefficient γ = ṫ(1, x)− ṫ(0, x) on the excluded

variables i(Z,X). This single coefficient cannot have the same sign as p(1, x) − p(0, x)

for all x if this sign is different for some x, as would happen if Assumption WMON

were satisfied, but Assumption MON were not.

Proposition SA.2 generalizes S loczyński’s argument to include TSLS specifications

with excluded variables that are combinations of multivalued instruments and covari-

ates, and which have non-binary treatments. This opens up a gap between the sufficient

and necessary conditions because it is possible, at least in principle, for the first stage

specification to be monotonicity-incorrect for some instrument contrasts, as long as it

is monotonicity-correct “on average” across all instrument contrasts. This type of for-

tuitous averaging seems difficult to defend, so for practical purposes we view the gap

between sufficient and necessary in Proposition SA.2 as empirically irrelevant.

While Proposition SA.2 generalizes the setting considered by S loczyński (2020,

2024), it doesn’t change the basic takeaway of his analysis. Even if rich covariates

is satisfied, βtsls is not weakly causal unless the first stage specification is sufficiently

flexible to reproduce the assumed direction of the monotonicity condition for each co-

variate value. In the main text, we maintained Assumption MON, and considered the

case where i(Z,X) = Z; in this setting, the TSLS specification is always monotonicity-
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correct and the only consideration for weak causality is the rich covariates condition. If

Assumption MON is weakened to Assumption WMON and/or a different specification

of the excluded variables i(Z,X) are used, then monotonicity-correctness needs to be

considered in addition to the rich covariates condition.

SA.2.4 Weak monotonicity and (ordered) strong monotonicity

An implication of Proposition SA.2 is that if one is only willing to maintain Assump-

tion WMON, then the full saturate and weight (SW) specification (Angrist and Pischke,

2009; Angrist and Imbens, 1995) must be used to ensure that βtsls is weakly causal.

This specification has X saturated and specifies the excluded variables i(Z,X) to in-

clude interactions between each of the instrument and covariate values. Even if Z is

binary, this results in a number of excluded variables equal to the number of covari-

ates. This makes the SW specification vulnerable to many instruments bias. In our

working paper (Blandhol et al., 2022), we investigated the extent of many instruments

bias in a simulation and found that it was a serious problem for the TSLS estimator.

In those simulations, it also remained a problem even when employing various forms

of jackknife estimators (Angrist et al., 1999; Ackerberg and Devereux, 2009; Kolesár,

2013). S loczyński (2024) provides some evidence that many instruments bias in the

SW specification can be reliably detected through the pre-test developed by Mikusheva

and Sun (2022).

The large number of excluded variables in SW are created by interacting X and

Z. If these interactions are removed, then the resulting TSLS specification will be

monotonicity-correct and thus weakly causal under Assumption MON, but not nec-

essarily under Assumption WMON. Our Assumption MON is actually a bit stronger

than the usual statement of the monotonicity condition, such as the original statement

in Imbens and Angrist (1994), because it requires Z to be ordered. In Blandhol et al.

(2022), we called Assumption MON ordered strong monotonicity to reflect this addi-

tional requirement. If we drop this restriction, we get what S loczyński (2024) calls

strong monotonicity.

Assumption SMON. (Strong monotonicity) For all z, z̄ ∈ Z, either

P[T (z̄) ≥ T (z)|X = x] = 1

or P[T (z) ≥ T (z̄)|X = x] = 1 for all x.

Assumption SMON is the same as Assumption MON when Z is binary, but not for

more general types of instruments.

Given the preceding discussion, one might think that Assumption SMON is sufficient

to ensure that βtsls is monotonicity-correct and therefore weakly causal in specifications
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with no interactions, so that i(Z,X) = Z. Perhaps surprisingly, this turns out not to

be true. The reason is that omitted interaction terms can bias the coefficients on I = Z

in a way that contradicts the sign of the propensity score.

For an example of this, suppose that Z = {0, 1, 2} and that X is binary, then specify

I ≡ [1[Z = 1], 1[Z = 2]] ≡ [Z1, Z2]
′ as indicators. Then

ṫ(2, x) − ṫ(1, x) = γ2 − γ1,

where γ ≡ [γ1, γ2]
′ is the vector of population coefficients on I for the first stage

regression. Even if p(2, x) − p(1, x) > 0 for both values of x, it is still possible to have

γ2 − γ1 < 0, so that the TSLS specification has a monotonicity-incorrect first stage.

To see the intuition, let V ≡ T − p(Z,X) be the difference between T and its

conditional mean, then enumerate:

T = p(0, 0) + (p(0, 1) − p(0, 0))X + (p(1, 0) − p(0, 0))Z1 + (p(2, 0) − p(0, 0))Z2

(p(1, 1) − p(0, 1))Z1X + (p(2, 1) − p(0, 1))Z2X

≡ X ′λ⋆ + I ′γ⋆ +W ′ζ + V,

where W ≡ [Z1X,Z2X]′ and the coefficient vectors collect the appropriate values of

p(z, x). Letting Ĩ ≡ I−L[I|X], T̃ ≡ T−L[T |X], and W̃ ≡W−L[W |X], then applying

the Frisch-Waugh-Lovell Theorem,

γ = E[Ĩ Ĩ ′]−1 E[Ĩ T̃ ] = E[Ĩ Ĩ ′]−1 E[Ĩ(Ĩ ′γ⋆ + W̃ ′ζ + V )] = γ⋆ + E[Ĩ Ĩ ′]−1 E[ĨW̃ ′]ζ︸ ︷︷ ︸
omitted variables bias

.

If the bias term is zero, then γ = γ⋆ and γ2 − γ1 = p(2, 0) − p(1, 0) > 0. However, the

bias term is not zero in general.

As a numerical example, suppose that P[X = 1] = .5, with

P[Z = z|X = x] =


.5, if z = 0

.05 + .4x, if z = 1

.45 − .4x, if z = 2

.

and set

p(z, 0) =


0, if z = 0

.085, if z = 1

.170, if z = 2

and p(z, 1) =


0, if z = 0

.425, if z = 1

.510, if z = 2

.
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Then it can be shown through some tedious calculations that γ = [.355, .24]′, so that γ2−
γ1 < 0 even while p(z, x) is strictly increasing in z for both values of x. Intuitively, when

Z = 1 it is overwhelmingly likely that X = 1, and when Z = 2, it is overwhelmingly

likely that X = 0. So γ1, the regression coefficient on Z1, is mostly determined by

variation in the X = 1 group, while γ2, the regression coefficient on Z2, is mostly

driven by variation in the X = 0 group. Yet the change in the conditional mean of T

from Z = 0 to Z = 1 conditional on X = 1 is much larger than the change from Z = 0

to Z = 2 conditional on X = 2. As a consequence, γ1 ends up being larger than γ2,

violating monotonicity-correctness.

SA.3 Details on the simulation design

In this section, we discuss in detail how we constructed the DGP used in Section 5.4.

We set X = (X1, X2) to be a two-dimensional vector of covariates, where X1 takes

many values and X2 takes nine values. The support of X1, which we vary in the

simulations, is determined by a Halton sequence on [0, 1], while the support of X2 is

0, 1/8, 2/8, . . . , 1. The distribution of both X1 and X2 is taken to be uniform, with X1

and X2 independent.

We calibrate E[Z|X] to Card’s data by setting Z to be the binary indicator for near

four-year college, X1 to be experience divided by 20, which is roughly the maximum in

the data, and X2 to be one of nine geographic regions. There are 9! = 362,880 possible

ways to map region to the numerical support of X2. For each one, we regress Z onto a

fully interacted cubic polynomial between X1 and X2, weighting each observation with

X = x by the inverse empirical probability that X = x. We select the region mapping

that yields the regression with the smallest sum of squared residuals. The resulting

specification of E[Z|X] can be written as

E[Z|X = (x1, x2)] =
[
1 x1 x21 x31

]


1.07 −2.71 7.61 −5.87

−1.96 6.69 −10.64 8.32

1.72 −1.91 −1.65 −3.19

0.21 −8.30 20.76 −9.71




1

x2

x22

x32

 , (40)

which is linear in 16 terms. Figure SA.1 plots (40) for 20 × x1 against region-specific

cubic regressions of the four-year college indicator onto years of experience.

We generate the binary treatment, T , by the threshold-crossing equation

T = 1[U ≤ p(Z)], (41)

where U is distributed uniformly over [0, 1], independently of Z and X. Assumption

MON is satisfied under (41) (Vytlacil, 2002). We take p(0) = .42 and p(1) = .54, which
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Figure SA.1: Relationship between college-presence instrument and covariates
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Notes: This figure plots the mean of the college-presence instrument used by Card (1995), conditional on
region and years of experience. The solid black line is the line of best fit in the data, obtained by regressing
E[Z|X] on a set of region-specific cubic polynomials in years of experience. The dashed red line is E[Z|X = x]
for the DGP in our simulations.

matches the propensity score in Card’s data when T is defined as 13 years or more of

completed schooling (some college). The group indicator is determined directly from

(41) as

G =


at if U ≤ p(0)

cp if U ∈ (p(0), p(1)]

nt if U > p(1)

.

To generate potential outcomes Y (t), we let

E[Y (t)|G = g,X = x] = θ′0h(t|g, x)′, (42)

where h(t|g, x) are basis functions that contain cubic terms in x = (x1, x2) that vary

freely with t and g. The coefficients on these basis functions, θ0, are found as solutions to

the optimization problem described ahead. The dimension of h (and θ0) is 96 = 2×3×16

for two treatment arms, three groups, and sixteen cubic polynomial coefficients for each

group. We generate Y (t) by adding a normal error with mean zero and variance .2 to

56



(42). The variance of .2 is roughly equal to the sample variance of log wages in Card’s

data.

The optimization problem we use to find θ0 is set up to match some key estimates

in Card’s data. To implement the problem, we utilize an observation from Mogstad

et al. (2018) that many estimands can be written as weighted averages of θ0. We

write the weights in these weighted averages as w{estimand}. The form of w can be

complicated, so we do not provide explicit expressions here, but they depend on h and

the joint distribution of (G,T,X,Z), for which we use the distribution implied by the

DGP through the above constructions when X1 has 24 points of support. Having these

linear-in-θ expressions is useful because it allows us to define the optimization problem

as a convex quadratic program with linear constraints.

The objective of the optimization problem is to match a weighted average of treated

outcomes for always-takers and average untreated outcomes for never-takers. Letting

Ȳtz denote the sample average of Y among the subpopulation with T = t and Z = z in

Card’s data, the objective we minimize is:

Ω(θ) ≡
(
Ȳ10 − θ′w{E[Y |T = 1, Z = 0]}

)2
+
(
Ȳ01 − θ′w{E[Y |T = 0, Z = 1]}

)2
.

The constraints involve the following estimates from Card’s data:

• Ȳ ≈ 6.26 is the sample average of log wages.

• β̂ols ≈ .24 is the OLS estimate of the coefficient on the some college indicator

(defined as above) in a regression of log wage on some college, controlling for

the covariates used by Card (1995, Table 3A, column (5)), which is the same

specification we consider in Section 6.1.

• β̂iv ≈ .66 is the corresponding IV estimate where the near college indicator is used

to instrument for some college.

• β̂rich ≈ .43 is the DDML-PLIV estimate, constructed using the same DDML

estimator as in the simulations.

• β̂late ≈ .20 is the DDML estimate of the unconditional LATE, constructed using

the same algorithms as the DDML-PLIV estimate.
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We use these estimators to impose the following linear constraints on θ:

θ′w{E[Y ]} = Ȳ (43)

θ′w{βols} = β̂ols (44)

θ′w{βiv} = β̂iv (45)

θ′w{βrich} = β̂rich (46)

θ′w{βlate} = β̂late. (47)

We additionally constrain θ so that the implied values of E[Y (t)|X = x] are linear

(Assumption LIN) to match the special cases discussed in Propositions 1 and 2:

θ′w{E[Y (t)|X = x]} = ϑ0(t) + ϑ1(t)x1 + ϑ2(t)x2 for all t and x, (48)

where ϑ1(t), ϑ2(t), ϑ3(t) are additional variables of optimization.14 We also impose three

additional constraints that restrict treatment effects:

θ′w{E[Y (1) − Y (0)|G = g,X = x]} ∈ [−2, 2] for all g and x. (49)

θ′w{E[Y (1) − Y (0)|G = nt]} = 0 (50)

θ′w{E[Y (1) − Y (0)|G = at, X = x]} ≥ 0 for all x. (51)

The overall optimization problem that we solve is then:

θ0 = arg min
θ,ϑ

Ω(θ) s.t. (43)–(51). (52)

The problem is a linearly-constrained convex quadratic program.

14In practice, we do this by restricting the nonlinear terms of θ′w{E[Y (t)|X = x]} to be zero, so that the
number of imposed constraints does not depend on the number of support points that X has.

58



SA.4 Additional figures and tables

Figure SA.2: Alternative weights for βiv in the simulation DGP
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Figure SA.3: Population values of the estimands in the simulation DGP
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Table SA.1: Detailed simulation results

Estimator Estimand Mean (SD) RMSE 10% 25% Median 75% 90% p < .05 Avg. CI

N = 500, |X1| = 24

Linear IV 0.660 0.719 (0.788) 0.840 –0.260 0.165 0.611 1.183 1.958 0.006 4.021
Correctly specified 0.430 0.484 (0.797) 0.799 –0.533 –0.055 0.396 0.955 1.639 0.018 4.355
Saturated 0.430 0.449 (1.251) 1.252 –1.077 –0.251 0.356 1.010 1.845 0.004 17.539
PLIV (DDML) 0.430 0.588 (0.783) 0.799 –0.435 0.050 0.514 1.065 1.734 0.016 3.987
Abadie’s κ 0.669 0.726 (0.930) 0.976 –0.382 0.110 0.617 1.230 2.030 0.022 13.309

N = 500, |X1| = 100

Linear IV 0.709 0.845 (0.867) 0.955 –0.177 0.263 0.710 1.262 2.208 0.010 4.420
Correctly specified 0.445 0.544 (0.801) 0.807 –0.445 0.038 0.438 0.975 1.742 0.014 4.471
Saturated 0.445 0.546 (2.231) 2.234 –1.476 –0.442 0.424 1.280 2.866 0.000 —
PLIV (DDML) 0.445 0.683 (0.779) 0.815 –0.337 0.180 0.600 1.119 1.841 0.012 4.226
Abadie’s κ 0.716 0.875 (0.931) 1.025 –0.248 0.305 0.734 1.348 2.206 0.016 13.780

N = 3,000, |X1| = 24

Linear IV 0.660 0.663 (0.249) 0.341 0.339 0.478 0.641 0.848 1.072 0.088 1.130
Correctly specified 0.430 0.434 (0.238) 0.238 0.098 0.262 0.409 0.601 0.803 0.048 1.085
Saturated 0.430 0.428 (0.245) 0.245 0.079 0.247 0.404 0.601 0.801 0.030 1.153
PLIV (DDML) 0.430 0.522 (0.242) 0.259 0.192 0.346 0.492 0.694 0.917 0.040 1.096
Abadie’s κ 0.669 0.685 (0.290) 0.386 0.319 0.474 0.647 0.873 1.168 0.054 1.664

N = 3,000, |X1| = 1,000

Linear IV 0.731 0.748 (0.249) 0.386 0.399 0.553 0.749 0.922 1.118 0.098 1.170
Correctly specified 0.452 0.454 (0.232) 0.232 0.109 0.278 0.457 0.632 0.788 0.042 1.104
Saturated 0.452 0.451 (0.824) 0.824 –0.694 –0.046 0.381 0.985 1.604 0.000 6.163
PLIV (DDML) 0.452 0.546 (0.237) 0.255 0.203 0.366 0.548 0.723 0.900 0.034 1.117
Abadie’s κ 0.737 0.768 (0.296) 0.433 0.359 0.554 0.755 0.968 1.234 0.086 1.707

N = 10,000, |X1| = 24

Linear IV 0.660 0.659 (0.133) 0.265 0.460 0.557 0.664 0.756 0.862 0.298 0.604
Correctly specified 0.430 0.427 (0.126) 0.126 0.235 0.330 0.430 0.529 0.620 0.038 0.577
Saturated 0.430 0.426 (0.127) 0.127 0.236 0.324 0.431 0.532 0.619 0.040 0.586
PLIV (DDML) 0.430 0.499 (0.128) 0.146 0.304 0.400 0.500 0.602 0.688 0.050 0.584
Abadie’s κ 0.669 0.660 (0.138) 0.268 0.456 0.553 0.664 0.766 0.871 0.182 0.870

N = 10,000, |X1| = 3,000

Linear IV 0.733 0.737 (0.133) 0.314 0.555 0.621 0.735 0.837 0.928 0.422 0.613
Correctly specified 0.453 0.453 (0.127) 0.127 0.262 0.355 0.455 0.552 0.641 0.044 0.579
Saturated 0.453 0.440 (0.325) 0.326 –0.043 0.197 0.431 0.677 0.918 0.006 1.996
PLIV (DDML) 0.453 0.522 (0.127) 0.144 0.340 0.425 0.523 0.624 0.713 0.048 0.586
Abadie’s κ 0.739 0.730 (0.145) 0.313 0.531 0.607 0.728 0.841 0.939 0.262 0.928

Notes: Simulations based on 500 replications. Confidence intervals are constructed using HC3 estimators.
We do not report an average length for the saturated specification with N = 500 and |X1| = 100 because the
standard errors are not defined in many replications.
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Table SA.2: Simulation results using different learners separately

Estimator Mean (SD) RMSE 10% 25% Median 75% 90% p < .05 Avg. CI

N = 500

Neural network (2 neurons) 0.564 (0.758) 0.770 –0.432 0.036 0.481 0.998 1.626 0.014 3.959
Neural network (10 neurons) 0.455 (0.796) 0.797 –0.623 –0.083 0.395 0.947 1.564 0.024 4.257
Gradient boosting (stumps) 0.560 (0.520) 0.536 –0.018 0.260 0.442 0.761 1.377 0.010 4.281
Gradient boosting (trees) 0.259 (0.382) 0.419 –0.155 0.065 0.228 0.453 0.734 0.036 3.353
Random forest (mtry = 3) 0.378 (0.581) 0.583 –0.363 –0.004 0.365 0.710 1.213 0.016 4.690
Random forest (mtry = 4) 0.433 (0.630) 0.630 –0.420 –0.024 0.401 0.858 1.380 0.010 4.351
Lasso 0.957 (1.179) 1.291 –0.284 0.294 0.863 1.539 2.646 0.002 14.575

N = 3,000

Neural network (2 neurons) 0.512 (0.240) 0.254 0.186 0.337 0.486 0.686 0.896 0.034 1.096
Neural network (10 neurons) 0.437 (0.240) 0.240 0.105 0.264 0.416 0.613 0.812 0.050 1.087
Gradient boosting (stumps) 0.879 (0.245) 0.512 0.597 0.683 0.827 1.032 1.304 0.311 0.997
Gradient boosting (trees) 0.366 (0.130) 0.145 0.207 0.265 0.342 0.454 0.578 0.036 0.767
Random forest (mtry = 3) 0.324 (0.241) 0.263 0.045 0.170 0.293 0.444 0.700 0.136 1.239
Random forest (mtry = 4) 0.372 (0.183) 0.192 0.136 0.232 0.341 0.481 0.675 0.076 0.911
Lasso 0.714 (0.390) 0.483 0.255 0.404 0.629 0.946 1.359 0.002 2.391

N = 10,000

Neural network (2 neurons) 0.489 (0.127) 0.140 0.302 0.392 0.488 0.589 0.680 0.044 0.584
Neural network (10 neurons) 0.427 (0.127) 0.127 0.235 0.327 0.430 0.533 0.618 0.040 0.577
Gradient boosting (stumps) 1.110 (0.165) 0.700 0.895 0.978 1.102 1.229 1.370 1.000 0.578
Gradient boosting (trees) 0.450 (0.078) 0.081 0.345 0.388 0.443 0.509 0.572 0.012 0.423
Random forest (mtry = 3) 0.318 (0.146) 0.184 0.149 0.211 0.290 0.407 0.541 0.306 0.527
Random forest (mtry = 4) 0.293 (0.092) 0.165 0.174 0.219 0.283 0.351 0.450 0.422 0.365
Lasso 0.428 (0.148) 0.148 0.250 0.312 0.396 0.534 0.665 0.038 0.776

Notes: Simulations based on 500 replications with |X1| = 24. If one views these algorithms as nonparametric,
then their estimand is the value of βrich reported in Table SA.1. The packages used to implement the learners
are documented in footnote 9. The penalty parameter for the lasso is selected via K-fold cross validation
with K = 5.

Table SA.3: Sensitivity to covariate specification in Dube and Harish (2020)

(1) (2) (3) (4) (5) (6) (7) (8)

IV estimate 1.011 0.511 0.681 0.984 1.220 0.262 1.190 0.400
(0.523) (0.231) (0.355) (0.519) (0.640) (0.170) (0.639) (0.211)
[0.011] [0.005] [0.029] [0.015] [0.013] [0.142] [0.014] [0.039]

Polity fixed effects ✓ ✓ ✓
Decade fixed effects ✓ ✓ ✓
Missing gender control ✓ ✓ ✓
Previous monarch controls ✓ ✓ ✓

Notes: Clustered standard errors are reported in parentheses. Brackets contain p-values for the clustered wild
bootstrap procedure implemented by Dube and Harish (2020) with 1000 replications. Column (8) replicates
Table 3, column (3) of Dube and Harish (2020). The sample size is 3,586.
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Table SA.4: Detailed results from all applications

(1) (2) (3) (4) (5) (6) (7)
RESET Included Sample

Application β̂ols β̂iv, no X β̂iv β̂rich p-value variables size

Panel A. Illustrative examples

Card (1995) 0.075 0.188 0.132 0.122 0.000 14 3,010
(0.004) (0.026) (0.054) (0.053)

Nunn and Wantchekon (2011) -0.203 -0.190 -0.271 -0.071 0.000 99 16,679
(0.033) (0.111) (0.088) (0.091)

Dube and Harish (2020) 0.115 1.011 0.400 0.318 0.000 66 3,586
(0.035) (0.522) (0.211) (0.240)

Panel B. IV survey

Alesina and Zhuravskaya (2011) -1.984 -5.727 -3.646 -2.919 0.182 14 97
(0.639) (1.289) (1.307) (1.115)

Autor et al. (2013) -0.171 -0.666 -0.596 -0.547 0.000 15 1,444
(0.028) (0.143) (0.099) (0.091)

Becker and Woesmann (2009) 0.099 0.422 0.189 0.186 0.012 12 452
(0.010) (0.071) (0.027) (0.031)

Bloom et al. (2012) 1.669 2.708 3.071 2.152 0.000 160 422
(0.789) (1.918) (1.253) (1.304)

Condra et al. (2018) -0.016 -0.135 -0.092 -0.097 0.923 18 410
(0.007) (0.128) (0.047) (0.067)

Dal Bo et al. (2009) 0.027 -0.015 0.083 0.058 0.000 141 5,502
(0.006) (0.030) (0.037) (0.032)

Dinkelman (2011) -0.001 0.025 0.095 0.118 0.004 22 1,816
(0.005) (0.045) (0.055) (0.118)

Dippel (2014) -0.295 -0.676 -0.443 -0.462 0.000 44 182
(0.048) (0.326) (0.103) (0.235)

Gilchrist and Sands (2016) 0.619 0.939 0.843 0.828 0.401 213 2,064
(0.058) (0.245) (0.279) (0.292)

Hornung (2014) 1.741 5.437 3.380 0.892 0.004 10 150
(0.287) (4.180) (1.137) (0.773)
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Table SA.5: Details on specifications used in all applications

Sample Num. included
Study Specification size variables

Alesina and Zhuravskaya (2011) Table 7, Panel A, Column (2) 97 14

Autor et al. (2013) Table 3, Panel I, Column (6) 1,444 15

Becker and Woesmann (2009) Table 3, Column (2) 452 12

Bloom et al. (2012) Table 2, Column (7) 422 160

Card (1995) Table 3, Panel A, Column (5) 3,010 14

Condra et al. (2018) Table 2, Panel A, Column (3) 410 18

Dal Bo et al. (2009) Table 5, Panel B, Column (3) 5,501 141

Dinkelman (2011) Table 4, Column (8) 1,816 22

Dippel (2014) Table 5, Panel B, Column (6) 182 44

Dube and Harish (2020) Table 3, Column (3) 3,586 66

Gilchrist and Sands (2016) Table 4, Column (6) 2,064 213

Hornung (2014) Table 4, Column (5) 150 10

Nunn and Wantchekon (2011) Table 6, Column (2) 16,679 99
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